Fault Diagnosis for Rolling Element Bearing in Dataset Bias Scenario  

在线阅读下载全文

作  者:侯良生 张均东 HOU Liangsheng;ZHANG Jundong(Marine Engineering College,Dalian Maritime University,Dalian 116026,Liaoning,China)

机构地区:[1]Marine Engineering College,Dalian Maritime University,Dalian 116026,Liaoning,China

出  处:《Journal of Shanghai Jiaotong university(Science)》2023年第5期638-651,共14页上海交通大学学报(英文版)

基  金:Foundation item:the Research on Intelligent Ship Testing and Verification(No.[2018]473)。

摘  要:Recently, data-driven methods, especially deep learning, outperform other methods for rolling elementbearing (REB) fault diagnosis. Nevertheless, most research work assumes that REB dataset is unbiased. Inthe real industry applications, the dataset bias exists with REB owing to varying REB working conditions andnoise interference. Recently proposed adversarial discriminative domain adaptation (ADDA) is an increasinglypopular incarnation to solve dataset bias problem. However, it mainly devotes to realizing domain alignments, andignores class-level alignments;it can cause degradation of classification performance. In this study, we proposea new REB fault diagnosis model based on improved ADDA to address dataset bias. The proposed diagnosismodel realizes domain- and class-level alignments in dataset bias scenario;it consists of two feature extractors,a domain discriminator, and two label classifiers. The feature extractors and domain discriminator are trainedin an adversarial manner to minimize the domain difference in feature extractors. The domain discrepancy inlabel classifier is reduced by minimizing correlation alignment (CORAL) loss. We evaluate the proposed model onthe Case Western Reserve University (CWRU) bearing dataset and Paderborn University bearing dataset. Theproposed method yields better results than other methods and has good prospects for industrial applications.

关 键 词:rolling element bearing(REB) dataset bias adversarial discriminative domain adaptation(ADDA) correlation alignment(CORAL)loss 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象