Design and experiment of fuzzy-PID based tillage depth control system for a self-propelled electric tiller  被引量:1

在线阅读下载全文

作  者:Maohua Xiao Ye Ma Chen Wang Junyun Chen Yejun Zhu Petr Bartos Guosheng Geng 

机构地区:[1]College of Engineering,Nanjing Agricultural University,Nanjing 210031,China [2]Faculty of Agriculture,University of South Bohemia,Studentska 1668,Czech

出  处:《International Journal of Agricultural and Biological Engineering》2023年第4期116-125,共10页国际农业与生物工程学报(英文)

基  金:the Agricultural Science and Technology Independent Innovation Fund of Jiangsu Province(CX(22)3101);State Key Research and development program(2022YFD2001204);the Modern Agricultural Machinery Equipment and Technology Promotion Project in Jiangsu Province(NJ2021-26).

摘  要:The research on the self-propelled electric tiller is vital for further improving the quality and efficiency of greenhouse rotary tillage operation,reducing the work intensity and operation risk of operators,and achieving environmentally friendly characteristics.Most of the existing self-propelled tillers rely on manual adjustment of the tillage depth.Moreover,the consistency and stability of the tillage depth are difficult to guarantee.In this study,the automatic control method of tillage depth of a self-propelled electric tiller is investigated.A method of applying the fuzzy PID(Proportional Integral Derivative)control method to the tillage depth adjustment system of a tiller is also proposed to realize automatic control.The system uses the real-time detection of the resistance sensor and angle sensor.The controller runs the electronically controlled hydraulic system to adjust the force and position comprehensively.The fuzzy control algorithm is used in the operation error control to realize the double-parameter control of the tillage depth.The simulation and experimental verification of the system are conducted.Results show that the control system applying fuzzy PID can improve the soil breaking rate by 3%in the operation process based on reducing the stability variation of tillage depth by 24%.The control strategy can reach the set value of tillage depth quickly and accurately.It can also meet the requirement of tillage depth consistency during the operation.

关 键 词:Fuzzy PID Self-propelled electric tiller Tillage depth Electro-controlled hydraulic system Comprehensive adjustment of force and position 

分 类 号:S23[农业科学—农业机械化工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象