基于车载激光扫描的城市道路全要素地图生产  被引量:2

City road full feature map production based on vehicle mounted laser scanning

在线阅读下载全文

作  者:王越 谭仁春 郭明武 陈涛 WANG Yue;TAN Renchun;GUO Mingwu;CHEN Tao(Wuhan Geomatics Institute,Wuhan,Hubei 430022,China;Technology Innovation Center for Real Scene 3D Construction and Refined Urban Governance,MNR,Wuhan,Hubei 430022,China)

机构地区:[1]武汉市测绘研究院,湖北武汉430022 [2]自然资源部实景三维建设与城市精细化治理工程技术创新中心,湖北武汉430022

出  处:《测绘标准化》2023年第3期16-21,共6页Standardization of Surveying and Mapping

基  金:湖北省自然资源厅科技项目(ZRZY2023KJ23)。

摘  要:随着自动驾驶领域对高精地图应用需求的不断增强,用户对城市道路测绘成果的精度、丰富度和现势性提出了更高的要求。道路全要素地图作为重要的道路全息测绘产品之一,具有空间精度高、地理要素全、属性信息丰富的特点。本文基于车载激光扫描技术,设计了一套从外业数据采集、点云数据处理到道路全要素地图制作的完整流程,并以武汉市新型基础测绘建设试点项目为依托,选取武汉市中心城区约3 km^(2)试验区的道路作为研究对象,开展道路全要素地图生产实践。结果表明,成果精度不但能满足1∶500地形图修测更新等传统城市测绘工作的要求,而且可为智能交通和城市精细化治理等领域提供重要的数据支撑。With the increasing demand for high precision map application in the field of autonomous driving,higher requirements are put forward for the accuracy,abundance and freshness of city road surveying and mapping production.As one of important road holographic surveying and mapping production,road full feature map has the characteristics of high spatial accuracy,complete geographical elements and abundant attribute information.In this paper,a complete process from field data acquisition,point cloud data processing to road full feature map production is designed by using vehicle mounted laser scanning technology.Based on the pilot project of new fundamental surveying and mapping construction in Wuhan,the road in an experimental area of about 3 km^(2) in the central city of Wuhan is selected as the research object to carry out the production practice of road full feature map.The results show that the accuracy of the production can not only meet the requirements of traditional city surveying and mapping work such as 1∶500 topographic map updating,but also provide important data support for intelligent transportation and refined city governance and other fields.

关 键 词:车载激光扫描 点云数据 道路全要素地图 矢量提取 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象