检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:R.Abbasi P.Martinez R.Ahmad
机构地区:[1]Aquaponics 4.0 Learning Factory(AllFactory),Department of Mechanical Engineering,University of Alberta,9211116 St.,Edmonton,AB T6G 2G8,Canada [2]Mechanical and Construction Engineering Department,Northumbria University,Newcastle upon Tyne NE77YT,UK
出 处:《Artificial Intelligence in Agriculture》2023年第3期76-88,共13页农业人工智能(英文)
基 金:the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant File No.ALLRP 545537-19 and RGPIN-2017-04516).
摘 要:Deep learning and computer vision techniques have gained significant attention in the agriculture sector due to their non-destructive and contactless features.These techniques are also being integrated into modern farming systems,such as aquaponics,to address the challenges hindering its commercialization and large-scale implementation.Aquaponics is a farming technology that combines a recirculating aquaculture system and soilless hydroponics agriculture,that promises to address food security issues.To complement the current research efforts,a methodology is proposed to automatically measure the morphological traits of crops such as width,length and area and estimate the effective plant spacing between grow channels.Plant spacing is one of the key design parameters that are dependent on crop type and its morphological traits and hence needs to be monitored to ensure high crop yield and quality which can be impacted due to foliage occlusion or overlapping as the crop grows.The proposed approach uses Mask-RCNN to estimate the size of the crops and a mathematical model to determine plant spacing for a self-adaptive aquaponics farm.For common little gem romaine lettuce,the growth is estimated within 2 cm of error for both length and width.The final model is deployed on a cloud-based application and integrated with an ontology model containing domain knowledge of the aquaponics system.The relevant knowledge about crop characteristics and optimal plant spacing is extracted from ontology and compared with results obtained from the final model to suggest further actions.The proposed application finds its signifi-cance as a decision support system that can pave the way for intelligent system monitoring and control.
关 键 词:Deep learning Ontology modeling Crop phenotyping Leafy crops Aquaponics Digital farming Plant spacing
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26