Conditions for advantageous quantum Bitcoin mining  

在线阅读下载全文

作  者:Robert R.Nerem Daya R.Gaur 

机构地区:[1]Institute for Quantum Science and Technology,University of Calgary,Alberta,T2N 1N4,Canada [2]Department of Mathematics,University of California San Diego,California,92093,United States [3]Department of Mathematics and Computer Science,University of Lethbridge,Alberta,T1K 3M4,Canada

出  处:《Blockchain(Research and Applications)》2023年第3期52-63,共12页区块链研究(英文)

基  金:supported by the Alberta Government.

摘  要:Our aim is to determine the conditions for quantum computing technology to give rise to the security risks associated with quantum Bitcoin mining.Specifically,we determine the speed and energy efficiency a quantum computer needs to offer an advantage over classical mining.We analyze the setting in which the Bitcoin network is entirely classical except for a single quantum miner with a small hash rate compared to the network.We develop a closed-form approximation for the probability that the quantum miner successfully mines a block,with this probability dependent on the number of Grover iterations the quantum miner applies before making a measurement.Next,we show that for a quantum miner that is“peaceful”,this success probability is maximized if the quantum miner applies Grover iterations for 16 min before measuring,which is surprising,as the network mines blocks every 10 min on average.Using this optimal mining procedure,we show that the quantum miner outperforms a classical computer in efficiency(cost per block)if the condition Q<Crb is satisfied,where Q is the cost of a Grover iteration,C is the cost of a classical hash,r is the quantum miner's speed in Grover iterations per second,and b is a factor that attains its maximum if the quantum miner uses our optimal mining procedure.This condition lays the foundation for determining when quantum mining and the known security risks associated with it will arise.

关 键 词:Quantum algorithms Quantum mining Grover search Bitcoin Quantum attacks 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象