区间值Picture模糊参数集结算子及其应用  

Interval-valued picture fuzzy parameter aggregation operator and its application

在线阅读下载全文

作  者:李明[1] 刘雅雄 周毅 LI Ming;LIU Yaxiong;ZHOU Yi(School of Business,North Minzu University,Yinchuan,Ningxia 750021,China;Tongxin Yuhai Middle School English Teaching and Research Group,Wuzhong,Ningxia 751300,China)

机构地区:[1]北方民族大学商学院,宁夏银川750021 [2]同心县豫海中学英语教研组,宁夏吴忠751300

出  处:《石河子大学学报(自然科学版)》2023年第5期640-654,共15页Journal of Shihezi University(Natural Science)

基  金:宁夏自然科学基金项目(2020AAC03242);宁夏高等学校科学研究项目(NGY2020056)。

摘  要:针对决策信息为区间值Picture模糊数的多属性群决策问题,在充分考虑属性间相互关联的情况下,将区间值Picture模糊数与广义Heronian均值函数和Heronian平均算子结合,定义了区间值Picture模糊参数广义加权Heronian平均算子,并研究了其性质。该信息集结算子能够反映信息的完整性、属性相关性和决策者的风险偏好。然后,提出了一种基于区间值Picture模糊参数广义加权Heronian平均算子的多属性群决策模型。最后,运用本文提出的群决策模型对信息系统进行了最优选择,并与其它模型进行比较,说明所提模型的有效性和优越性。Aiming at the multi-attribute group decision-making problem in which the decision information is interval-valued picture fuzzy numbers,with full consideration of the correlation between the attributes,the interval-valued picture fuzzy numbers are combined with the generalized Heronian mean function and the Heronian average operator,we define the interval-valued picture fuzzy parameter generalized weighted Heronian average operator,and its properties are studied.The information aggregation operator is able to reflect the completeness of the information,attribute relevance,and the risk preference of decision makers.Then,a multi-attribute group de-cision-making model based on the interval-valued picture fuzzy parameter generalized weighted Heronian average operator is proposed.Finally,the group decision-making model proposed in this paper is used to select the optimal information system,and compares with another model to illustrate the effectiveness and advantages of the proposed model.

关 键 词:多属性群决策 模糊性 区间值Picture模糊数 集结算子 广义Heronian均值函数 

分 类 号:C934[经济管理—管理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象