检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xi Mu Sichen Wang Peng Jiang Yanlan Wu
机构地区:[1]School of Resources and Environmental Engineering,Anhui University,Hefei 230601,China [2]Information Materials and Intelligent Sensing Laboratory of Anhui Province,Hefei 230601,China [3]Anhui Province Engineering Laboratory for Mine Ecological Remediation,Anhui University,Hefei 230601,China
出 处:《Journal of Environmental Sciences》2023年第10期122-133,共12页环境科学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(No.41604028);the Anhui Provincial Naturel Science Foundation(No.1708085QD83);the Anhui Science and Technology Department Major Project(No.18030801111);the Projects of Innovation and Development of Anhui Meteorological Bureau(No.CXM202102).
摘 要:Recently,the global background concentration of ozone(O_(3))has demonstrated a rising trend.Among various methods,groun-basedmonitoring of O_(3)concentrations is highly reliable for research analysis.To obtain information on the spatial characteristics of O_(3)concentrations,it is necessary that the groundmonitoring sites be constructed in sufficient density.In recent years,many researchers have used machine learning models to estimate surface O_(3)concentrations,which cannot fully provide the spatial and temporal information contained in a sample dataset.To solve this problem,the current study utilized a deep learning model called the Residual connection Convolutional Long Short-Term Memory network(RConvLSTM)to estimate daily maximum8-hr average(MDA8)O_(3)over Jiangsu province,China during 2020.In this research,the R-ConvLSTM model not only provides the spatiotemporal information ofMDA8 O_(3),but also involves residual connection to avoid the problem of gradient explosion and gradient disappearance with the deepening of network layers.We utilized the TROPOMI total O_(3)column retrieved fromSentinel-5 Precursor,ERA5 reanalysismeteorological data,and other supplementary data to build a pre-trained dataset.The R-ConvLSTM model achieved an overall sample-base cross-validation(CV)R^(2)of 0.955 with root mean square error(RMSE)of 9.372μg/m^(3).Model estimation also showed a city-based CV R^(2)of 0.896 with RMSE of 14.029μg/m^(3),the highest MDA8 O_(3)in spring being 122.60±31.60μg/m^(3)and the lowest in winter being 69.93±18.48μg/m^(3).
关 键 词:Ozone pollution Jiangsu province Sentinel-5 precursor Deep learning
分 类 号:X515[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117