检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘洪成 袁德志 朱锟鹏 LIU Hongcheng;YUAN Dezhi;ZHU Kunpeng(School of Mechanical Automation,Wuhan University of Science and Technology,Wuhan 430081;Institute of Intelligent Machines,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Changzhou 213164)
机构地区:[1]武汉科技大学机械自动化学院,武汉430081 [2]中国科学院合肥物质科学研究院智能机械研究所,常州213164
出 处:《机械工程学报》2023年第17期310-324,共15页Journal of Mechanical Engineering
基 金:国家自然科学基金资助项目(52175528)。
摘 要:刀具磨损预测对于提高加工精度和生产效率具有重要意义。刀具磨损预测模型主要包括基于物理的模型和基于数据驱动的模型。基于物理的模型一般使用经验公式或简化公式对刀具磨损过程进行建模,在切削参数变化的情况下其预测精度通常会变低。另一方面,数据驱动模型通过测量数据来估计刀具磨损,没有考虑刀具磨损机理,导致模型泛化性和结果可解释性较差。为了解决这些问题,提出了一种新的用于刀具磨损预测的高斯过程潜力模型。所提出的模型使用高斯过程对刀具磨损物理模型的未知参数进行建模,建立了一个物理信息机器学习模型。高斯过程潜力模型不仅避免了物理模型的参数识别,而且挖掘了来自物理域和数据域的隐藏信息。此外,通过将物理模型与高斯过程的协方差函数相结合,构建了一个物理信息协方差函数来约束模型的输出,提高了预测精度。多工况试验结果表明,所提方法的绝对平均误差和均方根误差分别为2.5945、3.7408,比传统数据驱动模型的预测误差要更小,预测精度进一步提升。Tool wear prediction is of great significance for improving machining accuracy and production efficiency.Tool wear prediction models include physics-based models and data-driven models.The physics-based models often apply empirical or simplified formula to model the tool wear process which often loss prediction accuracy under changing cutting parameters.On the other side,the data-driven models estimate the tool wear by monitor data without considering the mechanisms of tool wear,resulting in low model generalization and results interpretation.To address these issues,a novel Gaussian process latent force model for tool wear prediction is proposed.The proposed model applies Gaussian process to model the unknown parameters of the tool wear physical model,and establishes a physics-informed machine learning model.The Gaussian process latent force model not only avoids identifying parameters in the physical model,but also explores hidden information from physics and data domains.Moreover,by integrating the physical model with the Gaussian process covariance function,a physics-informed covariance function is constructed to constrain the outputs of the model and improve the prediction accuracy.The multi-condition experiments results show that the mean absolute error and root mean square error of the proposed method are 2.5945 and 3.7408,respectively,which are smaller than the prediction error of the traditional data-driven models and further improve the prediction accuracy.
分 类 号:TH165[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26