DyPipe: A Holistic Approach to Accelerating Dynamic Neural Networks with Dynamic Pipelining  

在线阅读下载全文

作  者:庄毅敏 胡杏 陈小兵 支天 Yi-Min Zhuang;Xing Hu;Xiao-Bing Chen;Tian Zhi(State Key Laboratory of Processors,Institute of Computing Technology,Chinese Academy of Sciences Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]State Key Laboratory of Processors,Institute of Computing Technology,Chinese Academy of Sciences Beijing 100190,China [2]University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Journal of Computer Science & Technology》2023年第4期899-910,共12页计算机科学技术学报(英文版)

基  金:supported by the Beijing Natural Science Foundation under Grant No.JQ18013;the National Natural Science Foundation of China under Grant Nos.61925208,61732007,61732002 and 61906179;the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)under Grant No.XDB32050200;the Youth Innovation Promotion Association CAS,Beijing Academy of Artificial Intelligence(BAAI)and Xplore Prize.

摘  要:Dynamic neural network(NN)techniques are increasingly important because they facilitate deep learning techniques with more complex network architectures.However,existing studies,which predominantly optimize the static computational graphs by static scheduling methods,usually focus on optimizing static neural networks in deep neural network(DNN)accelerators.We analyze the execution process of dynamic neural networks and observe that dynamic features introduce challenges for efficient scheduling and pipelining in existing DNN accelerators.We propose DyPipe,a holistic approach to optimizing dynamic neural network inferences in enhanced DNN accelerators.DyPipe achieves significant performance improvements for dynamic neural networks while it introduces negligible overhead for static neural networks.Our evaluation demonstrates that DyPipe achieves 1.7x speedup on dynamic neural networks and maintains more than 96%performance for static neural networks.

关 键 词:dynamic neural network(NN) deep neural network(DNN)accelerator dynamic pipelining 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象