熔模精密铸件荧光自动检测技术研究进展及智能化发展趋势  

Research Progress and Intelligent Development Trend of Fluorescent Automatic Detection for Investment Castings

在线阅读下载全文

作  者:余慧澎 康茂东[1,2] 王俊 YU Huipeng;KANG Maodong;WANG Jun(School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming,Shanghai 200240,China)

机构地区:[1]上海交通大学材料科学与工程学院,上海200240 [2]上海市先进高温材料及其精密成形重点实验室,上海200240

出  处:《铸造技术》2023年第10期953-963,共11页Foundry Technology

基  金:国家科技重大专项(J2019-VI-0004-0117);国家自然科学基金(51971142,52031012,52090042);浦江人才计划(2022PJD032)。

摘  要:熔模精密铸件表面缺陷严重降低铸件的服役可靠性。工程上,铸件表面缺陷的检测通常采用荧光检测方法。然而,由于荧光检测的图像复杂、检测员水平参差不齐和长时间检测引起的视觉疲劳等原因,降低了荧光检测的精度和效率,严重影响航空航天重大装备服役安全。近年来,荧光自动检测技术逐渐发展起来。本文系统总结了国内外荧光自动检测系统的研究现状,给出了基于传统处理法建立荧光自动检测系统的主要步骤,梳理了近年来新出现的基于深度学习法的荧光自动检测方法,并对未来荧光缺陷智能化检测的发展趋势进行了展望。The surface defects of investment castings seriously reduce the reliability of castings in service.In engineering,the surface defects of castings are usually detected by fluorescent penetrant inspection(FPI).However,due to the complexity of the image,the uneven level of inspectors and the visual fatigue caused by long-term inspection,the accuracy and efficiency of FPI are reduced.Therefore,fluorescent penetrant automatic inspection systems have been gradually developed.This paper systematically summarizes the research status of fluorescence penetrant automated inspection at home and abroad.This paper also gives the main steps of the automatic fluorescent defect detection system based on the traditional image processing method,and reports a new automatic fluorescent defect detection module based on the deep learning method.Furthermore,this paper predicts the development trend of intelligent fluorescent defect detection in investment castings.

关 键 词:机器视觉 机器学习 熔模铸造 荧光检测 表面缺陷 

分 类 号:TG156[金属学及工艺—热处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象