Ensemble and optimized hybrid algorithms through Runge Kutta optimizer for sewer sediment transport modeling using a data pre-processing approach  

在线阅读下载全文

作  者:Enes Gul Mir Jafar Sadegh Safari Omer Faruk Dursun Gokmen Tayfur 

机构地区:[1]Department of Civil Engineering,Inonu University,Malatya,Turkey [2]Department of Civil Engineering,Yas¸ar University,Izmir,Turkey [3]Department of Civil Engineering,Izmir Institute of Technology,Izmir,Turkey

出  处:《International Journal of Sediment Research》2023年第6期847-858,共12页国际泥沙研究(英文版)

摘  要:Uncontrolled sediment deposition in drainage and sewer systems raises unexpected maintenance expenditures.To this end,implementation of an accurate model relying on effective parameters involved is a reliable benchmark.In this study,three machine learning techniques,namely extreme learning machine(ELM),multilayer perceptron neural network(MLPNN),and M5P model tree(M5PMT);and three optimization approaches of Runge Kutta(RUN),genetic algorithm(GA),and particle swarm optimization(PSO)are applied for modeling.The optimization and ensemble hybridization approaches are applied in the modeling procedure.For the case of hybrid optimized models,the ELM and MLPNN models are hybridized with RUN,GA,and PSO algorithms to develop six hybrid models of ELM-RUN,ELM-GA,ELMPSO,MLPNN-RUN,MLPNN-GA,and MLPNN-PSO.Ensemble hybrid models are developed through coupling the ELM and MLPNN models with the M5PMT algorithm.The data pre-processing approach is applied to find the best randomness characteristic of the utilized data.Results illustrate that the RUNbased hybrid models outperform the GA-and PSO-based counterparts.Although the MLPNN-RUN and MLPNN-M5PMT hybrid models generate better results than their alternatives,MLPNN-M5PMT slightly outperforms MLPNN-RUN model with a coefficient of determination of 0.84 and a root mean square error of 0.88.The current study shows the superiority of the ensemble-based approach to the optimization techniques.Further investigation is needed by considering alternative optimization techniques to enhance sediment transport modeling.

关 键 词:Ensemble learning Hybrid model Machine learning Open channels Sediment transport Sewer pipes 

分 类 号:TV142[水利工程—水力学及河流动力学] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象