连续离散化算法对电力系统无功优化  被引量:2

Continuous Discretization Algorithm for Reactive Power Optimization of Power System

在线阅读下载全文

作  者:刘绎高 陈双 赵嵩 赵鹏宇 LIU Yigao;CHEN Shuang;ZHAO Song;ZHAO Pengyu(State Grid East Inner Mongolia Electric Power Co.,Ltd.,Hohhot 010020,China)

机构地区:[1]国网内蒙古东部电力有限公司,内蒙古呼和浩特010020

出  处:《电工技术》2023年第18期141-143,共3页Electric Engineering

摘  要:无功是电力系统运行的最大问题,不仅耗费大量的电能,还会增加电网的发热,增加能源消耗,给电网带来巨大的经济损失,因此加强电力系统的无功监测是目前亟待解决的问题。目前,电力系统无功监测存在数据量大、数据结构复杂的问题,造成无功监测结果不准确、无功监测时滞等问题,无法为电网潮流调节提供支持。为此,提出一种连续离散化算法,对电力系统进行无功持续监测,并通过离散性分析,判断电力系统的无功信号。MATLAB仿真显示:连续离散化算法准确率达到92%以上,降低了系统资源的占用率,降低幅度达到25%,时滞时间小于0.2 s。与蜂群算法比较,连续离散化算法能满足电力系统无功监测要求。Reactive power is the biggest problem in power system operation.It not only consumes a lot of electric energy,but also increases heat production of the grid,increases energy consumption,and brings huge economic losses.Therefore,strengthening the reactive power monitoring of power system is of greaturgency at present.The reactive power monitoring of power system has the disadvantages of large amount of data and complex data structure,leading to inaccurate reactive power monitoring results,delay of reactive power monitoring,and other problems,and thereby cannot provide satisfactory support for power fluctuation regulation.In this paper,a continuous discretization algorithm is proposed to continuously monitor reactive power,and identify reactive power signal through discretization analysis.MATLAB simulation shows that the continuous discretization algorithm has an accuracy rate of more than 92%,and reduces the occupancy rate of system resources by 25%,with the delay time less than 0.2 s.Compared with the bee colony algorithm,the continuous discretization algorithm can meet the requirements of power system reactive power monitoring and reduce the occupation of system resources.

关 键 词:电力系统 连续 离散化 算法 仿真 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象