检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马洪霞[1] 晁健宇 李庆东 Ma Hongxia;Chao Jianyu;Li Qingdong(Shaanxi Vocational College of Police Officers,Xi'an 710021,China;Sichuan University,Chengdu 610207,China)
机构地区:[1]陕西警官职业学院,陕西西安710021 [2]四川大学,四川成都610207
出 处:《现代科学仪器》2023年第5期180-185,共6页Modern Scientific Instruments
基 金:陕西省教育厅专项科学研究项目(编号:17JK0954)。
摘 要:公安执法规范化水平提升是依法治国的基本要求,针对规范化水平量化评价缺失的问题,从5个维度构建了11个评价指标,提出了公安执法规范化水平评价的GWO-SVM模型。和传统的SVM评价模型相比,GWO-SVM评价模型对公安执法规范化水平评价的准确率高达95.8%,远远高于SVM评价模型。将GWO-SVM模型应用于城乡公安执法规范化水平评价中,结果表明城市公安执法规范化水平明显高于乡镇公安执法规范化水平,同时近几年城市公安执法规范化水平也呈现出波动变化的趋势,这对提升公安执法规范化水平提供了数据参考。The improvement of the standardization level of public security law enforcement is the basic requirement of the rule of law.Aiming at the lack of quantitative evaluation of the standardization level,11 evaluation indicators are constructed from five dimensions,and the GWO-SVM model for the evaluation of the standardization level of public security law enforcement is proposed.Compared with the traditional SVM evaluation model,the accuracy of GWO-SVM evaluation model in evaluating the standardization level of public security law enforcement is 95.8%,which is much higher than the SVM evaluation model.The GWO-SVM model is applied to the evaluation of the standardization level of public security law enforcement in urban and rural areas.The results show that the standardization level of public security law enforcement in urban areas is significantly higher than that in rural areas.At the same time,the standardization level of public security law enforcement in urban areas also shows a fluctuating trend in recent years,which provides a data reference for improving the standardization level of public security law enforcement.
关 键 词:灰狼算法优化支持向量机模型 公安执法规范化 评价模型
分 类 号:TH162[机械工程—机械制造及自动化] D631[政治法律—政治学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.131.110