基于GWO-SVM模型的公安执法规范化水平评价与提升研究  

Research on the evaluation and improvement of police law enforcement standardization level based on GWO-SVM model

在线阅读下载全文

作  者:马洪霞[1] 晁健宇 李庆东 Ma Hongxia;Chao Jianyu;Li Qingdong(Shaanxi Vocational College of Police Officers,Xi'an 710021,China;Sichuan University,Chengdu 610207,China)

机构地区:[1]陕西警官职业学院,陕西西安710021 [2]四川大学,四川成都610207

出  处:《现代科学仪器》2023年第5期180-185,共6页Modern Scientific Instruments

基  金:陕西省教育厅专项科学研究项目(编号:17JK0954)。

摘  要:公安执法规范化水平提升是依法治国的基本要求,针对规范化水平量化评价缺失的问题,从5个维度构建了11个评价指标,提出了公安执法规范化水平评价的GWO-SVM模型。和传统的SVM评价模型相比,GWO-SVM评价模型对公安执法规范化水平评价的准确率高达95.8%,远远高于SVM评价模型。将GWO-SVM模型应用于城乡公安执法规范化水平评价中,结果表明城市公安执法规范化水平明显高于乡镇公安执法规范化水平,同时近几年城市公安执法规范化水平也呈现出波动变化的趋势,这对提升公安执法规范化水平提供了数据参考。The improvement of the standardization level of public security law enforcement is the basic requirement of the rule of law.Aiming at the lack of quantitative evaluation of the standardization level,11 evaluation indicators are constructed from five dimensions,and the GWO-SVM model for the evaluation of the standardization level of public security law enforcement is proposed.Compared with the traditional SVM evaluation model,the accuracy of GWO-SVM evaluation model in evaluating the standardization level of public security law enforcement is 95.8%,which is much higher than the SVM evaluation model.The GWO-SVM model is applied to the evaluation of the standardization level of public security law enforcement in urban and rural areas.The results show that the standardization level of public security law enforcement in urban areas is significantly higher than that in rural areas.At the same time,the standardization level of public security law enforcement in urban areas also shows a fluctuating trend in recent years,which provides a data reference for improving the standardization level of public security law enforcement.

关 键 词:灰狼算法优化支持向量机模型 公安执法规范化 评价模型 

分 类 号:TH162[机械工程—机械制造及自动化] D631[政治法律—政治学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象