芯片材料表面微纳流道的金刚石滚压成型实验研究  被引量:1

Experimental study on rolling microchannel and nanochannel in chip materials by diamond

在线阅读下载全文

作  者:周聪 陈钊杰 谢晋[1] 陈绒 ZHOU Cong;CHEN Zhaojie;XIE Jin;CHEN Rong(School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510641,China;Guangdong University of Science and Technology,Dongguan 523083,China)

机构地区:[1]华南理工大学机械与汽车工程学院,广东广州510640 [2]广东科技学院,广东东莞523083

出  处:《光学精密工程》2023年第12期1785-1792,共8页Optics and Precision Engineering

基  金:国家自然科学基金资助项目(No.51975219);广东省基础与应用研究基金项目(2022A1515220053);广东省教育厅普通高校认定类科研项目(2020KQNCX103)。

摘  要:在微流控芯片中,微流体自驱动受限于微纳流道制造技术。因此,提出一种采用分布有锯齿状微尖端的金刚石刀轮滚压硬脆性芯片材料表面的微纳流道加工方法。通过实验研究,分析微纳流道成型机理,且研究工艺参数及材料性质的作用机制,并探究其自驱动微流变性能。结果表明:在一定的切深和气压下,刀轮微尖端处的材料接触面产生应力集中,当达到压痕间裂纹贯通值时,以远大于刀轮滚压速度在材料表面形成纳米流道,当超过材料强度极限时形成微米流道,且深宽比随着最大应力增大而增大。单晶碳化硅、蓝宝石和光学玻璃形成纳米流道的最大应力范围分别为266~750 MPa,256~600 MPa和74~150 MPa,其中,光学玻璃的纳米流道深宽比高达1.1,表面粗糙度低至1 nm。低硬度材料可生成高深宽比的纳米流道,而高断裂韧性的材料表面质量最高。此外,纳米流道能够以高至0.055 mm/s的速度和低至0.001μm^(3)/s的剂量自驱动微流体。As regards microfluidic chips,the advancement of self-driven microfluidics is hindered by the limitations of microchannel and nanochannel fabrication techniques.Therefore,the fabrication of microchannels and nanochannels by using a diamond cutter wheel featuring serrated microtips to roll the surfaces of hard and brittle chip materials was proposed in this study.The mechanism of microchannel and nanochannel formation was analyzed through experimental studies,and the mechanisms of the process parameters and material properties,as well as the self-driven micro-rheological properties,were investigated.The results indicate that at a certain feed depth and the barometric pressure,stress concentration occurs on the material contact surface at the microtip of the cutter wheel.Once the crack penetration value between the indentations is reached,nanochannels are formed on the material surface at a speed significantly higher than the cutter wheel rolling speed,and microchannels are formed when the strength limit of the material is exceeded.The aspect ratio increases with the maximum stress.The maximum-stress ranges for nanochannel formation in 4H-SiC,sapphire,and optical glass are 266-750,256-600,and 74-150 MPa respectively,with optical glass exhibiting nanochannels with aspect ratios as high as 1.1 and surface roughness values as low as 1 nm.Low-hardness materials can produce nanochannels with higher aspect ratios,while high-fracture toughness materials exhibit the highest surface quality.In addition,the self-driven microfluids in nanochannels can achieve flow velocities as high as 0.055 mm/s and doses as low as 0.001μm3/s.

关 键 词:微纳流道 金刚石刀轮 单晶碳化硅 蓝宝石 光学玻璃 

分 类 号:TP394.1[自动化与计算机技术—计算机应用技术] TH691.9[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象