Structural Connectivity Enhanced Anisotropic 3D Network for Brain Midline Delineation  

在线阅读下载全文

作  者:Yufan Liu Kongming Liang Yinuo Jing Shen Wang Zhanyu Ma Yiming Li Yizhou Yu Yizhou Wang Jun Guo 

机构地区:[1]Pattern Recognition and Intelligent System Laboratory,School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China. [2]Center on Frontiers of Computing Studies,School of Computer Science,Peking University,Beijing 100871,China [3]AI Lab,Deepwise Healthcare,Beijing 100089,China

出  处:《Journal of Beijing Institute of Technology》2023年第5期562-578,共17页北京理工大学学报(英文版)

基  金:supported by National Natural Science Foundation of China(NSFC)(Nos.62106022,62225601,and U19B2036);Key Program of Beijing Municipal Natural Science Foundation(No.7191003);Beijing Natural Science Foundation Project(No.Z200002).

摘  要:Brain midline delineation can facilitate the clinical evaluation of brain midline shift,which has a pivotal role in the diagnosis and prognosis of various brain pathology.However,there are still challenges for brain midline delineation:1)the largely deformed midline is hard to localize if mixed with severe cerebral hemorrhage;2)the predicted midlines of recent methods are not smooth and continuous which violates the structural priority.To overcome these challenges,we propose an anisotropic three dimensional(3D)network with context-aware refinement(A3D-CAR)for brain midline modeling.The proposed network fuses 3D context from different two dimensional(2D)slices through asymmetric context fusion.To exploit the elongated structure of the midline,an anisotropic block is designed to balance the difference between the adjacent pixels in the horizontal and vertical directions.For maintaining the structural priority of a brain midline,we present a novel 3D connectivity regular loss(3D CRL)to penalize the disconnectivity between nearby coordinates.Extensive experiments on the CQ dataset and one in-house dataset show that the proposed method outperforms three state-of-the-art methods on four evaluation metrics without excessive computational burden.

关 键 词:brain midline delineation refinement network structure prior connectivity regular loss 

分 类 号:R318[医药卫生—生物医学工程] TP391.41[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象