基于海量数据分析的电力工程动态智能监控技术研究  被引量:5

Research on dynamic and intelligent monitoring technology of power engineering based on massive data analysis

在线阅读下载全文

作  者:李玺 张维堂 常健翔 李敏银 LI Xi;ZHANG Weitang;CHANG Jianxiang;LI Minyin(State Grid Gansu Electric Power Company,Lanzhou 730030,China;State Grid Longnan Power Supply Company,Longnan 746000,China;State Grid Qingyang Power Supply Company,Qingyang 745000,China)

机构地区:[1]国网甘肃省电力公司,甘肃兰州730030 [2]国网陇南供电公司,甘肃陇南746000 [3]国网庆阳供电公司,甘肃庆阳745000

出  处:《电子设计工程》2023年第21期65-69,共5页Electronic Design Engineering

基  金:国网甘肃省电力公司2021年专项成本项目(W21PW2702093)。

摘  要:针对电网公司对电力工程监控要求日益提高的现状,文中开展了大数据分析技术在电力工程智能监控中的应用研究。所构建的监控指标体系涵盖了进度、成本及质量共三个方面,并提出了基于标度法(SM)与先验(Apriori)算法的电力工程动态智能监控算法。利用标度法筛选出对电力工程存在重要影响的监控指标,同时采用先验算法实现不同指标间关联规则的挖掘,根据强关联规则构造有向网络模型。通过将现有电力工程数据输入至该模型中,便可对电力工程的动态进行智能监控。仿真算例结果表明,文中构建的监控指标体系完整、全面,且所设计算法能够实现对电力工程项目偏差风险的识别。In view of the increasing requirements of power grid companies for power engineering monitoring,this paper carries out the application research of big data analysis technology in power engineering intelligent monitoring.The monitoring index system covers three aspects:progress,cost and quality,and a dynamic intelligent monitoring algorithm for power engineering based on Scaling Method(SM) and Apriori algorithm is proposed.At the same time,a priori algorithm is used to mine the association rules between different indexes,and a directed network model is constructed according to the strong association rules.By inputting the existing power engineering data into the model,the dynamic of power engineering can be monitored intelligently.The simulation results show that the monitoring index system constructed in this paper is complete and comprehensive,and the designed algorithm can identify the deviation risk of power engineering project.

关 键 词:电力工程 监控指标 大数据 海量数据分析 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置] TN99[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象