检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shi-Yuan Tong Ke Fan Zai-Wei Zhou Lin-Yun Liu Shu-Qing Zhang Yinghui Fu Guang-Zhong Wang Ying Zhu Yong-Chun Yu
机构地区:[1]Jing'an District Central Hospital of Shanghai,State Key Laboratory of Medical Neurobiology,MOEFrontiers Center for Brain Science,Institutes of Brain Science,Fudan University,Shanghai 200032,China [2]Shanghai Xunyin Biotechnology Co.,Ltd.,Shanghai 201802,China [3]CAS Key Laboratory of Computational Biology,Shanghai Institute of Nutrition and Health,University of Chinese Academy of Sciences,Chinese Academy of Sciences,Shanghai 200031,China [4]Huashan Hospital,State Key Laboratory of Medical Neurobiology,MOE Frontiers Center for Brain Science,Institutes of Brain Science,Fudan University,Shanghai 200032,China
出 处:《Genomics, Proteomics & Bioinformatics》2023年第2期414-426,共13页基因组蛋白质组与生物信息学报(英文版)
基 金:supported by the National Key R&D Program of China(Grant No.2021ZD0202500);the Shanghai Natural Science Foundation,China(Grant No.20ZR1403800);the National Natural Science Foundation of China(Grant Nos.31900476,82071259,31930044,and 31725012);the Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX01);ZJ Lab,the Shanghai Center for Brain Science and Brain-Inspired Technology,China,the Foundation of Shanghai Municipal Education Commission,China(Grant No.2019-01-07-00-07-E00062);the Collaborative Innovation Program of Shanghai Municipal Health Commission,China(Grant No.2020CXJQ01).
摘 要:Next-generation sequencing technologies both boost the discovery of variants in the human genome and exacerbate the challenges of pathogenic variant identification.In this study,we developed Pathogenicity Prediction Tool for missense variants(mvPPT),a highly sensitive and accurate missense variant classifier based on gradient boosting.mvPPT adopts high-confidence training sets with a wide spectrum of variant profiles,and extracts three categories of features,including scores from existing prediction tools,frequencies(allele frequencies,amino acid frequencies,and genotype frequencies),and genomic context.Compared with established predictors,mvPPT achieves superior performance in all test sets,regardless of data source.In addition,our study also provides guidance for training set and feature selection strategies,as well as reveals highly relevant features,which may further provide biological insights into variant pathogenicity.
关 键 词:Machine learning Missensevariant GENOMICS Computational biology Pathogenicityprediction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.158.108