Li^(+)doping induced zero-thermal quenching in Cs_(3)Zn_(6-x-y)B_(9)O_(21):xEu^(3+),yLi^(+)(0≤x≤0.10,0.06≤y≤0.16)  被引量:1

在线阅读下载全文

作  者:Yuxing Bai Liwei Wu Qilin Cheng Li Wu Yongfa Kong Yi Zhang Jingjun Xu 

机构地区:[1]Key Laboratory of Weak-Light Nonlinear Photonics,Ministry of Education,School of Physics,Nankai University,Tianjin,300071,China [2]College of Science,Civil Aviation University of China,Tianjin,300300,China [3]Institute of Photo-electronic Thin Film Devices and Technology,Nankai University,Tianjin,300071,China

出  处:《Journal of Rare Earths》2023年第10期1478-1486,I0001,共10页稀土学报(英文版)

基  金:the National Natural Science Foundation of China(11774187,U1902218);National Key R&D Program of China(2018YFE0203400);Natural Science Foundation of Tianjin city(19JCYBJC17600);111 Project(B07013)。

摘  要:Thermal stability is a crucial index to assess application value of high-power LEDs,which is related to lattice defects.Herein,an effective structure-engineering strategy is proposed to achieve excellent properties.Under the 394 nm excitation,Cs_3Zn_(5.94)B_9O_(21):0.06Eu^(3+)possesses two characteristic emissions peaked at 591 and 612 nm with limited thermal stability.By introducing Li^(+)ions into the lattice,the sample exhibits high color purity and excellent zero-thermal quenching because the defect contents of the phosphor can be effectively modulated via charge-compensation effect.Then,under the stimulus of high temperature,the corresponding trap levels with a suitable depth(E=1.27 eV)will release electrons to recombine with the luminescent centers,compensating for the energy loss.The study provides a meaningful guide for optimizing and designing novel functional photoluminescent materials.

关 键 词:PHOTOLUMINESCENCE Charge compensation Lattice defects Thermal stability Rare earths 

分 类 号:TB34[一般工业技术—材料科学与工程] TN312.8[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象