一种基于图信号处理的BP神经网络语音识别方案  被引量:3

A BP neural network speech recognition scheme based on graph signal processing

在线阅读下载全文

作  者:叶蕾[1] 王婷婷[1] 郭海燕 陈雪红[1] 杨震 YE Lei;WANG Tingting;GUO Haiyan;CHEN Xuehong;YANG Zhen(School of Communications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;National Local Joint Engineering Research Center for Communications and Network Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)

机构地区:[1]南京邮电大学通信与信息工程学院,江苏南京210003 [2]南京邮电大学通信与网络技术国家地方联合工程研究中心,江苏南京210003

出  处:《南京邮电大学学报(自然科学版)》2023年第5期1-8,共8页Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition

基  金:国家自然科学基金(62071242)资助项目。

摘  要:文中研究图信号处理技术在语音信号处理领域的实现和应用。基于语音信号基本特征,提出一种语音图信号拓扑结构和图邻接矩阵新方案,即语音采样点为图顶点,全连接语音拓扑结构和语音样值差递减幂函数作为边权重。分析了新方案下浊音、清音和静音的图傅里叶变换。基于新方案下语音图傅里叶变换系数集中于低频的特性,设计图低通滤波器,并将该低通滤波器滤波后的语音信号进行基于BP神经网络的数字语音识别实验,正确识别率获得明显提高。This paper applies the graph signal processing technology to speech signal processing.Based on the basic characteristics of speech signals,a new method of topology structure and graph adjacency matrix of speech graph signals is proposed.This method uses speech sampling points as graph vertices,establishes the fully⁃connected speech topology,and assigns decreasing power function of value difference of samples as the edge weights.Then,the graph Fourier transform of voiced,unvoiced and non⁃speech signals are analyzed by the proposed approach.Since the graph Fourier transform coefficients are accumulated at the low frequency,a low pass graph filter is designed.The recognition performance of speech signals after filtering is increased significantly based on the BP neural network.

关 键 词:图信号处理 图傅里叶变换 图滤波器 语音识别 

分 类 号:TN912.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象