检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡逸 王锡淮[1] 肖健梅[1] HU Yi;WANG Xihuai;XIAO Jianmei(Logistic Engineering College,Shanghai Maritime University,Shanghai 201306,China)
出 处:《控制工程》2023年第9期1630-1639,1657,共11页Control Engineering of China
基 金:国家自然科学基金资助项目(71771143)。
摘 要:微分博弈理论可以解决多区域互联电力系统中频率的协调问题,但对于带非线性约束的微分博弈问题,传统算法难以求解。针对该问题,基于微分博弈理论,建立了多区域频率协同控制模型,考虑了电力系统中常见的非线性约束,并提出了一种基于改进灰狼优化算法的协同进化算法,用于求解该模型的反馈纳什均衡解,从而得到各区域二次调频的协同控制策略。通过仿真验证了所提方法的可行性,并与协同进化遗传算法和协同进化灰狼优化算法进行了对比,结果表明该方法的控制效果更佳。同时,所提方法对系统的功率扰动变化具有稳定的动态响应性能,对机组参数变化具有良好的鲁棒性。The differential game theory can solve the problem of frequency coordination in multi-area interconnected power system,but the traditional algorithm is difficult to solve the differential game problem with nonlinear constraints.In order to solve the problem,a multi-area frequency cooperative control model is established based on differential game theory,which considered the common nonlinear constraints in power system,and a coevolutionary algorithm based on improved gray wolf optimization algorithm is proposed to solve the feedback Nash equilibrium solution of the model,and then the cooperative control strategy of the secondary frequency modulation in each area is obtained.The simulation model verifies the feasibility of the proposed method,and compared with the coevolutionary genetic algorithm and coevolutionary gray wolf optimization algorithm,the proposed method has better control effect,stable dynamic response performance to the power disturbance of the system,and good robustness to the variation of unit parameters.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.212.53