检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许浩 虞慧群[1] XU Hao;YU Huiqun(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
机构地区:[1]华东理工大学信息科学与工程学院,上海200237
出 处:《控制工程》2023年第9期1658-1664,共7页Control Engineering of China
基 金:国家自然科学基金资助项目(61772200)。
摘 要:为了准确诊断信息物理系统的异常类型,提出了一种新的基于动态局部保持投影-局部离群因子(dynamic locality preserving projections-local outlier factor,DLPP-LOF)的方法。首先,采用数据增广策略在判别模型中考虑自相关性,进而利用对数据分布没有要求的流形学习方法——局部保持投影(locality preserving projections,LPP)提取特征。其次,计算测试数据特征相对于训练数据集各类别特征的局部离群因子(local outlier factor,LOF),将具有最小离群因子的类作为测试数据的类别。确定了异常类别后,在已建立的历史异常数据及相应决策方案库中搜索制定应急响应预案。最后,将所提出的DLPP-LOF方法在典型信息物理系统上进行测试,验证了其有效性及优越性。In order to accurately diagnose anomaly types for cyber physical system,a novel method based on dynamic locality preserving projections-local outlier factor(DLPP-LOF)is proposed.First,the data augmentation strategy is used to consider the autocorrelation in the discriminant model,and then the manifold learning method that does not require data distribution-locality preserving projections(LPP)is used to extract features.Secondly,calculate the local outlier factor(LOF)of the features of the testing data relative to the features of each category of the training dataset,and use the class with the smallest outlier factor as the category of the testing data.Once the anomaly category is determined,search and formulate emergency response plans in the established historical anomaly data and corresponding decision-making plan database.Finally,the DLPP-LOF method is tested on a typical cyber-physical system to demonstrate its effectiveness and superiority.
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.179