水稻遗传育种相关生物信息数据库和工具的研究进展  被引量:4

Research progress on bioinformatics databases and tools related to rice genetics and breeding

在线阅读下载全文

作  者:彭歆 钱乾 谭健韬 彭波 甘玉立 王成睿 刘琦 沈梦圆 PENG Xin;QIAN Qian;TAN Jiantao;PENG Bo;GAN Yuli;WANG Chengrui;LIU Qi;SHEN Mengyuan(Rice Research Institute,Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China(Co-construction by Ministry and Province),Ministry of Agriculture and Rural Affairs,Guangzhou 510642,China)

机构地区:[1]广东省农业科学院水稻研究所/广东省水稻育种新技术重点实验室/广东省水稻工程实验室/农业农村部华南优质稻遗传育种实验室(部省共建),广东广州510640

出  处:《华南农业大学学报》2023年第6期854-866,共13页Journal of South China Agricultural University

基  金:广东省农业科学院协同创新中心项目(XTXM202203);广东省农业科学院水稻研究所“优谷计划”(2023YG08);省级乡村振兴战略专项“种业振兴项目”(2022NJS00004);广东省水稻育种新技术重点实验室项目(2020B1212060047)。

摘  要:水稻Oryza sativa L.是主要的粮食作物,也是单子叶植物研究的模式植物。面对日益严峻的环境和人口压力,培育高产、优质、环境适性强的水稻品种是解决当前粮食安全问题的有效途径。随着多组学技术的快速发展,积累了海量的水稻遗传育种相关的数据。生物信息数据库和在线分析工具是存储这些数据的载体,用以整合、可视化和共享数据,并为数据的深入挖掘和利用提供工具,从而为育种决策提供数据支撑。本综述系统梳理了近20年来开发的水稻生物信息数据库和在线分析工具,并基于内置数据集和功能对它们进行了分类和总结。最后,讨论了现有的水稻生物信息数据库和在线分析工具的问题与不足,并对它们在大数据和人工智能时代的发展方向进行了展望。Rice(Oryza sativa L.)is both a major staple food and a model crop plant for monocot studies.Facing the increasingly severe environmental and population problems,breeding varieties with high yield,high quality,and wide adaptability is the efficient way to solve the food security problems.With the rapid development of multi-omics technology,large volumes of data related to rice genetics and breeding have been accumulated.Bioinformatics databases and online analysis tools are developed to store,integrate,visualize,and share these datasets.In addition,some databases possess built-in tools for further mining and using datasets to provide data support for decision-making in breeding.In this review,we systematically sort out rice bioinformatics databases and online analysis tools developed in the past two decades.Subsequently,we classified and summarized these resources based on their built-in datasets and features.Finally,the problems and deficiencies of the existing rice bioinformatics resources were discussed,and the development direction of bioinformatics resources in the era of big data and artificial intelligence was prospected.

关 键 词:水稻 遗传育种 生物信息数据库 在线分析工具 

分 类 号:S511[农业科学—作物学] S32

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象