检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:项新建[1] 周焜 费正顺[1] 郑永平[1] 姚佳娜 Xiang Xinjian;Zhou Kun;Fei Zhengshun;Zheng Yongping;Yao Jiana(Zhejiang University of Science and Technology,Hangzhou,310023,China)
机构地区:[1]浙江科技学院,杭州市310023
出 处:《中国农机化学报》2023年第10期201-208,共8页Journal of Chinese Agricultural Mechanization
基 金:浙江省自然科学基金(LY19F030004);浙江省重点研发计划项目(2018C01085);浙江省自然科学基金(LQ15F030006)。
摘 要:为实现杨梅采摘智能化,开发杨梅成熟度检测设备,提出一种基于改进YOLOX-NANO算法的杨梅果实成熟度检测方法。通过在特征加强提取网络层中引入通道注意力模块,提高网络对通道特征的提取能力;引入焦点损失函数代替标准交叉熵损失函数,解决单阶段网络正负样本不均衡问题,避免梯度方向指向非最优解;使用高效交并比损失函数,提高网络模型对目标识别的准确率。试验结果表明,在自建数据集上与原YOLOX-NANO相比,改进YOLOX-NANO算法对于三种不同成熟度杨梅果实的识别精度均有提升,平均精度达到92.67%,而网络模型大小只增加0.059 MB,推理速度不变,在精度达到与标准结构网络相当的前提下,更易于部署到嵌入式设备中。In order to realize the intelligent picking of Myrica rubra,a method based on the improved YOLOX-NANO algorithm is proposed to detect the ripeness of Myrica rubra.By introducing the ECA channel attention module into the feature-enhanced extraction network,the network s ability to extract channel features is enhanced.The Focus loss function is introduced to replace the standard cross-entropy loss function,which solves the problem of unbalance ofthe positive and negative samples in the single-stage network,and avoids the gradient direction pointing to a non-optimal solution.The EIoU loss function is used to improve the accuracy of the network model for target recognition.The experimental results show thatcompared with the original YOLOX-NANO,the improved YOLOX-NANO algorithm has improved the recognition accuracy for three different ripeness of prune fruits with mAP of 92.67%.and the network model size only increases by 0.059 MB,andthe reasoning speed is remained unchanged,it is easier to deploy in embedded devices for real production activities with the same accuracy comparable to that of the standard structured networks.
关 键 词:杨梅 YOLOX-NANO算法 通道注意力机制 焦点损失函数 高效交并比
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.33.133