基于联合模型的短期电力负荷预测方法  被引量:3

Short-term Load Forecasting Method Based on Combined Model

在线阅读下载全文

作  者:蔡君懿 李琪林[1] 严平[1] CAI Junyi;LI Qilin;YAN Ping(State Grid Sichuan Metering Center,Chengdu 610045,Sichuan,China)

机构地区:[1]国网四川省电力公司计量中心,四川成都610045

出  处:《四川电力技术》2023年第5期27-34,共8页Sichuan Electric Power Technology

基  金:国家电网有限公司总部科技项目统标准体系建设与“新型电力系统电磁测量设备及系国际化战略研究”(5700-202255225A-1-1-ZN)。

摘  要:为了准确预测电力负荷并提高电力系统调节和调度的灵活性、准确性,提出了基于差分自回归滑动平均和长短期记忆神经网络的短期负荷联合模型预测方法,以避免单一预测模型可能难以满足预测准确需求的情况。首先,使用差分自回归滑动平均和长短期记忆神经网络单一模型对短期电力负荷开展预测;然后,使用改进的粒子群优化算法对联合模型权重进行寻优;最后,利用最优权重将单一模型预测结果进行合并得到最终的预测结果。验证结果表明,所建立的联合模型能够对短期电力负荷进行准确的预测,且联合模型的预测精度要优于差分自回归滑动平均、长短期记忆神经网络和BP神经网络等单一模型,具有一定的工程应用价值。In order to accurately forecast power load and improve the flexibility and accuracy of power system regulation and scheduling,a short-term load forecasting method based on combined model of auto-regressive integrated moving average(ARIMA)and long short-term memory(LSTM)neural network is proposed to avoid that a single prediction model may be difficult to meet the prediction accuracy requirement.Firstly,the two single models of ARIMA and LSTM are used to forecast the short-term load,and then the hybrid particle swarm optimization(PSO)algorithm is used to optimize the weight of combined model.Finally,the forecasting results of the single model are combined with the optimal weight to obtain the final forecasting result.The verification results show that the proposed combined model can accurately forecast the short-term load,and its forecasting accuracy is better than that of single models of ARIMA,LSTM and back propagation neural network(BPNN),which has certain engineering application value.

关 键 词:短期电力负荷预测 差分自回归滑动平均模型 长短期记忆神经网络 联合模型 混合粒子群算法 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象