检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨琳琳 别书凡 王建坤 皇甫懿 刘焱 李文峰 施杰 Yang Linlin
机构地区:[1]云南农业大学机电工程学院,云南昆明650201 [2]云南省作物模拟与智能调控重点实验室,云南昆明650201
出 处:《江苏农业科学》2023年第19期165-172,共8页Jiangsu Agricultural Sciences
基 金:国家自然科学基金(编号:31860331、32160420);云南省重大科技专项(编号:202202AE090021)。
摘 要:为了实现单株玉米植株表型的快速无损检测,提出了一种基于深度学习的玉米植株表型检测方法。采集玉米植株表型数据集(包含多视角玉米植株图像和人工测量的鲜质量、干质量、叶面积表型数据),采用大步距卷积、resize降尺寸和大步距池化层降采样3种方法进行图像降采样,减少了模型计算消耗的资源,降低了图像的尺寸,并对比普通卷积、深度卷积、深度可分离卷积3种卷积的效果。改进了均方误差(MSE)和平均绝对误差(MAE),对不同数据量的样本区间给予不同的权重,解决了小型数据集存在的数据不均衡问题。在对比试验中,首先构建鲜质量表型检测模型,然后将表现较好的模型在干质量与叶面积模型中试验,筛选出对应的最优模型。结果显示,基于深度卷积和B-MSE损失函数的模型在玉米植株鲜质量、干质量、叶面积上的效果都最优。其中,深度卷积的效果最好。改进后的B-MSE和B-MAE在玉米鲜质量3个模型测试集上的相关系数r均达到了0.98以上,确定系数R 2均达到了0.97以上,平均绝对百分比误差MAPE均在3.2%以内,在干质量与叶面积模型上也提高了测试集上的相关系数r和确定系数R 2,并且降低了MAPE。
分 类 号:S126[农业科学—农业基础科学] TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.220.9