检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:凌键军 李志鹏 陈丹阳 王翔宇 钟诚[1,2] LING Jianjun;LI Zhipeng;CHEN Danyang;WANG Xiangyu;ZHONG Cheng(School of Computer,Electronics and Information,Guangxi University,Nanning 530004,China;Key Laboratory of Parallel,Distributed and Intelligent Computing of Guangxi Universities and Colleges,Nanning 530004,China;Tencent Cloud Computing(Beijing)Co.,Ltd.,Shenzhen 518000,China)
机构地区:[1]广西大学计算机与电子信息学院,广西南宁530004 [2]广西高校并行分布与智能计算重点实验室,广西南宁530004 [3]腾讯云计算(北京)有限责任公司,广东深圳518000
出 处:《广西大学学报(自然科学版)》2023年第5期1156-1166,共11页Journal of Guangxi University(Natural Science Edition)
基 金:国家自然科学基金项目(61962004)。
摘 要:为了研究句子结构关系对方面级情感分类模型性能的影响,针对当前方面级情感分类方法中过于重视句子中语法关系的作用,而忽视了句子的序列结构关系的问题,提出一种结合句子序列与语法关系的信息融合网络(sequence-syntax information fusion network,SYFN)模型。SYFN模型分别处理句子的序列与语法关系信息,并在融合2种结构关系信息的基础上进一步结合网络的高低层融合信息。这些改进措施使模型能够结合高低层网络的关系融合信息去处理各种复杂的句子关系,能够充分利用结构关系信息进行情感分类。实验结果表明,SYFN模型与基线模型相比性能有较明显的提升。In order to study the influence of sentence structure relationship on the performance of aspect level sentiment classification model,a new information fusion network(sequence-syntax information fusion network,SYFN)model combining sequence and syntax relationships is proposed to solve the problem that the current aspect level sentiment classification methods pay too much attention to the role of grammatical relationship in sentences,while ignoring the sequence structure relationship of sentences.In the SYFN model,the sequence and grammatical relationship information of sentences are processed separately,and based on the fusion of the two structural relationship information,the high and low layer fusion information of the network is further combined.These improvements enable the model to combine the relationship fusion information of high and low layer networks to deal with various complex sentence relationships,and fully utilize structural relationship information for sentiment classification.The experimental results show that the performance of the SYFN model is significantly improved compared with the baseline models.
关 键 词:深度学习 自然语言处理 方面级情感分类 语法依赖树 信息融合
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7