Approximating(mB,mP)-Monotone BP Maximization and Extensions  

在线阅读下载全文

作  者:Ruiqi Yang Suixiang Gao Lu Han Gaidi Li Zhongrui Zhao 

机构地区:[1]Beijing Institute for Scientific and Engineering Computing,Beijing University of Technology,Beijing 100124,China [2]School of Mathematical Sciences,University of Chinese Academy Sciences,Beijing 100049,China [3]School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China

出  处:《Tsinghua Science and Technology》2023年第5期906-915,共10页清华大学学报(自然科学版(英文版)

基  金:supported by the National Natural Science Foundation of China(No.12101587);the China Postdoctoral Science Foundation(No.2022M720329);the National Natural Science Foundation of China(No.12001523);the Beijing Natural Science Foundation Project(No.Z200002);the National Natural Science Foundation of China(No.12131003).

摘  要:The paper proposes the optimization problem of maximizing the sum of suBmodular and suPermodular(BP)functions with partial monotonicity under a streaming fashion.In this model,elements are randomly released from the stream and the utility is encoded by the sum of partial monotone suBmodular and suPermodular functions.The goal is to determine whether a subset from the stream of size bounded by parameter k subject to the summarized utility is as large as possible.In this work,a threshold-based streaming algorithm is presented for the BP maximization that attains a(1-k)/(2-k)-O(e)-approximation with O(1/e^(4)1og^(3)(1/s)log(2-k)k/(1-k)^(2))memory complexity,where k denotes the parameter of supermodularity ratio.We further consider a more general model with fair constraints and present a greedy-based algorithm that obtains the same approximation.We finally investigate this fair model under the streaming fashion and provide a(1-k)^(4)/(2-2k+k^(2))^(2)-O(e)-approximation algorithm.

关 键 词:submodular maximization streaming model threshold technique approximation algorithm 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象