检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚从军 贺春雅 邢万成 YAO Cong-jun;HEChun-ya;XING Wan-cheng(Department of Philosophy,Xiangtan University,Xiangtan,Hunan 411105,China;Department of Philosophy,Sichuan University,Chengdu,Sichuan 610065,China)
机构地区:[1]湘潭大学哲学系,湖南湘潭411105 [2]四川大学哲学系,四川成都610065
出 处:《贵州工程应用技术学院学报》2023年第4期68-76,共9页Journal of Guizhou University Of Engineering Science
基 金:国家社科基金重大项目“面向计算机人工智能的组合范畴语法研究”,项目编号:17ZDA027。
摘 要:自说谎者悖论提出以来,语义悖论问题一直都是逻辑哲学家关注的重要问题。众多优秀的逻辑哲学家对语义悖论问题提出了自己的创新性解悖方案,从罗素开始,历经塔尔斯基、克里普克、赫兹伯格、古普塔、伯奇、巴威斯等逻辑哲学家,都坚持将语义悖论视为逻辑矛盾,从而不遗余力地将其排除在系统之外。澳大利亚逻辑学家普利斯特尝试将悖论视为辩证矛盾,将语义悖论视为真矛盾加以接纳,融入到形式系统之中。这种新型的解悖方案为语义解悖带来了新的思路,其灵感来源于辩证法,因此也为辩证逻辑带来一些新的启示。Since the liar's paradox was put forward,the semantic paradox has always been an important issue that the philosophers of logic pay close attention to.Many excellent philosophers of logic have put forward their own innovative solutions to the problem of semantic paradox,starting with Russell,through Tarski,Kripke,Herzberg,Gupta,Burge,Barwise and other philosophers of logic,have insisted that the semantic paradox as a logical contradiction,so we try our best to exclude it from the system.Inspired by Hegel's dialectics,the Australian logician Priest proposed a new solution to paradoxical logic,which is different from previous logicians,and tried to treat paradoxes as dialectical contradictions,the semantic paradox is accepted as a true contradiction and integrated into the formal system.This new scheme brings a new way of thinking for semantic paradox resolution,and it also brings new enlightenment for dialectical logic because it is inspired by dialectics.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.85.94