检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张琬琪 程月华[1] 余自权 曹瑞 ZHANG Wanqi;CHENG Yuehua;YU Ziquan;CAO Rui(College of Automation Engineering,NUAA,Nanjing 211100,China;College of Information Engineering,Yangzhou University,Yangzhou 225000,China)
机构地区:[1]南京航空航天大学自动化学院,江苏南京211100 [2]扬州大学信息工程学院,江苏扬州225000
出 处:《飞行力学》2023年第5期23-29,共7页Flight Dynamics
基 金:国家自然科学基金资助(62003162);江苏省自然科学基金资助(BK20200416);空间智能控制技术实验室开放基金资助(HTKJ2022KL502015);中国高校产学研创新基金资助(2021ZYA02005)。
摘 要:针对执行较长飞行任务的飞行器在飞行任务期间难以实时准确预测机动能力的问题,开展了基于长短期记忆(LSTM)的飞行器纵向可用过载预测方法研究。首先,对飞行器纵向过载相关参量进行了分析。然后,以纵向可用过载为性能指标,建立了基于LSTM网络的BP神经网络预测模型。预测模型的输入是一段飞行时间内可测量的飞行状态数据序列,输出是未来时刻的纵向可用过载。最后,基于某型飞行器建立数字仿真模型并开展了仿真验证及结果分析。研究结果表明,所提出的预测模型准确有效,可以帮助实现飞行器飞行性能的实时评估和预测。A research had been carried out on the prediction method of longitudinal available over-load for aircraft based on the long short-term memory(LSTM)network,aiming to address the issue of real-time and accurate prediction of maneuverability during the extended flight missions for air-craft.Firstly,an analysis of the parameters related to longitudinal overload of the aircraft was con-ducted.Then,taking the longitudinal available overload as the performance index,a BP neural net-work prediction model based on LSTM network was established.The input of the prediction model is the measurable flight status data series over a period of flight time,and the output is the longitudinal available overload at a future time.Finally,a digital simulation model was established based on a certain type of aircraft,and simulation verification and result analysis were carried out.The research results show that the proposed prediction model is accurate and effective,and it can help to achieve the real-time evaluation and prediction of the flight performance of aircraft.
分 类 号:V211[航空宇航科学与技术—航空宇航推进理论与工程] V411.8
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222