检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:GUO Feng JIAO Liguo KIM Do Sang PHAM Tien-Son
机构地区:[1]School of Mathematical Sciences,Dalian University of Technology,Dalian 116024,China [2]Academy for Advanced Interdisciplinary Studies,Northeast Normal University,Changchun 130024,China [3]Department of Applied Mathematics,Pukyong National University,Busan 48513,South Korea [4]Department of Mathematics,Dalat University,Dalat 96300,Vietnam.
出 处:《Journal of Systems Science & Complexity》2023年第5期2186-2213,共28页系统科学与复杂性学报(英文版)
基 金:supported by the Chinese National Natural Science Foundation under Grant No.11571350;the Science and Technology Development Plan Project of Jilin Province,China under Grant No.YDZJ202201ZYTS302;the National Research Foundation of Korea(NRF)Grant Funded by the Korean Government under Grand No.NRF-2019R1A2C1008672;the International Centre for Research and Postgraduate Training in Mathematics(ICRTM)under Grant No.ICRTM012022.01。
摘 要:Let f be a real polynomial function with n variables and S be a basic closed semialgebraic set in R^(n).In this paper,the authors are interested in the problem of identifying the type(local minimizer,maximizer or not extremum point)of a given isolated KKT point x^(*)of f over S.To this end,the authors investigate some properties of the tangency variety of f on S at x^(*),by which the authors introduce the definition of faithful radius of f over S at x^(*).Then,the authors show that the type of x^(*)can be determined by the global extrema of f over the intersection of S and the Euclidean ball centered at x^(*)with a faithful radius.Finally,the authors propose an algorithm involving algebraic computations to compute a faithful radius of x*and determine its type.
关 键 词:Faithful radii KKT points polynomial functions tangency varieties TYPES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30