Sufficiency and Duality for Nonsmooth Interval-Valued Optimization Problems via Generalized Invex-Infine Functions  

在线阅读下载全文

作  者:Izhar Ahmad Krishna Kummari S.Al-Homidan 

机构地区:[1]Department of Mathematics and Statistics,King Fahd University of Petroleum and Minerals,Dhahran,31261,Saudi Arabia [2]Department of Mathematics,School of Science,GITAM,Hyderabad Campus,Hyderabad,502329,India

出  处:《Journal of the Operations Research Society of China》2023年第3期505-527,共23页中国运筹学会会刊(英文)

摘  要:In this paper,a new concept of generalized-affineness type of functions is introduced.This class of functions is more general than some of the corresponding ones discussed in Chuong(Nonlinear Anal Theory Methods Appl 75:5044–5052,2018),Sach et al.(J Global Optim 27:51–81,2003)and Nobakhtian(Comput Math Appl 51:1385–1394,2006).These concepts are used to discuss the sufficient optimality conditions for the interval-valued programming problem in terms of the limiting/Mordukhovich subdifferential of locally Lipschitz functions.Furthermore,two types of dual problems,namely Mond–Weir type and mixed type duals are formulated for an interval-valued programming problem and usual duality theorems are derived.Our results improve and generalize the results appeared in Kummari and Ahmad(UPB Sci Bull Ser A 82(1):45–54,2020).

关 键 词:Mordukhovich subdifferential Locally Lipschitz functions Generalized invex-infine function Interval-valued programming LU-optimal Constraint qualifications DUALITY 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象