检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Journal of the Operations Research Society of China》2023年第3期627-656,共30页中国运筹学会会刊(英文)
基 金:the National Natural Science Foundation of China(No.61773014)。
摘 要:In this paper,we consider a GI/M/1 queue operating in a multi-phase service environment with working vacations and Bernoulli vacation interruption.Whenever the queue becomes empty,the server begins a working vacation of random length,causing the system to move to vacation phase 0.During phase 0,the server takes service for the customers at a lower rate rather than stopping completely.When a vacation ends,if the queue is non-empty,the system switches from the phase 0 to some normal service phase i with probability qi,i=1,2,⋯,N.Moreover,we assume Bernoulli vacation interruption can happen.At a service completion instant,if there are customers in a working vacation period,vacation interruption happens with probability p,then the system switches from the phase 0 to some normal service phase i with probability qi,i=1,2,⋯,N,or the server continues the vacation with probability 1−p.Using the matrix geometric solution method,we obtain the stationary distributions for queue length at both arrival epochs and arbitrary epochs.The waiting time of an arbitrary customer is also derived.Finally,several numerical examples are presented.
关 键 词:GI/M/1 queue Working vacation Matrix geometric solution method Queueing theory
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222