The GI/M/1 Queue in a Multi-phase Service Environment with Working Vacations and Bernoulli Vacation Interruption  

在线阅读下载全文

作  者:Jian-Jun Li Li-Wei Liu 

机构地区:[1]School of Mathematics and Statistics,Nanjing University of Science and Technology,Nanjing,210094,Jiangsu,China

出  处:《Journal of the Operations Research Society of China》2023年第3期627-656,共30页中国运筹学会会刊(英文)

基  金:the National Natural Science Foundation of China(No.61773014)。

摘  要:In this paper,we consider a GI/M/1 queue operating in a multi-phase service environment with working vacations and Bernoulli vacation interruption.Whenever the queue becomes empty,the server begins a working vacation of random length,causing the system to move to vacation phase 0.During phase 0,the server takes service for the customers at a lower rate rather than stopping completely.When a vacation ends,if the queue is non-empty,the system switches from the phase 0 to some normal service phase i with probability qi,i=1,2,⋯,N.Moreover,we assume Bernoulli vacation interruption can happen.At a service completion instant,if there are customers in a working vacation period,vacation interruption happens with probability p,then the system switches from the phase 0 to some normal service phase i with probability qi,i=1,2,⋯,N,or the server continues the vacation with probability 1−p.Using the matrix geometric solution method,we obtain the stationary distributions for queue length at both arrival epochs and arbitrary epochs.The waiting time of an arbitrary customer is also derived.Finally,several numerical examples are presented.

关 键 词:GI/M/1 queue Working vacation Matrix geometric solution method Queueing theory 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象