Bipolar-growth multi-wing attractors and diverse coexisting attractors in a new memristive chaotic system  

在线阅读下载全文

作  者:黄旺鹏 赖强 Wang-Peng Huang;Qiang Lai(School of Tian You,East China Jiaotong University,Nanchang 330013,China;School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China)

机构地区:[1]School of Tian You,East China Jiaotong University,Nanchang 330013,China [2]School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China

出  处:《Chinese Physics B》2023年第10期310-316,共7页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant Nos. 62366014 and 61961019);the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202008)。

摘  要:This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other existing MMCSs, the most eye-catching point of the proposed MMCS is that the amplitude of the wing will enlarge towards the poles as the number of wings increases. Diverse coexisting attractors are numerically found in the MMCS, including chaos,quasi-period, and stable point. The circuits of the proposed memristor and MMCS are designed and the obtained results demonstrate their validity and reliability.

关 键 词:CHAOS memristive chaotic system multi-wing attractors coexisting attractors 

分 类 号:O415.5[理学—理论物理] TN60[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象