Ground-state phase diagram,symmetries,excitation spectra and finite-frequency scaling of the two-mode quantum Rabi model  

在线阅读下载全文

作  者:陈越 刘卯鑫 陈晓松 Yue Chen;Maoxin Liu;Xiaosong Chen(CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;School of Systems Science,Beijing Normal University,Beijing 100875,China)

机构地区:[1]CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China [2]School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China [3]School of Systems Science,Beijing Normal University,Beijing 100875,China

出  处:《Chinese Physics B》2023年第10期509-521,共13页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.12135003)。

摘  要:We investigate the two-mode quantum Rabi model(QRM)describing the interaction between a two-level atom and a two-mode cavity field.The quantum phase transitions are found when the ratioηof transition frequency of atom to frequency of cavity field approaches infinity.We apply the Schrieffer–Wolff(SW)transformation to derive the low-energy effective Hamiltonian of the two-mode QRM,thus yielding the critical point and rich phase diagram of quantum phase transitions.The phase diagram consists of four regions:a normal phase,an electric superradiant phase,a magnetic superradiant phase and an electromagnetic superradiant phase.The quantum phase transition between the normal phase and the electric(magnetic)superradiant phase is of second order and associates with the breaking of the discrete Z_(2) symmetry.On the other hand,the phase transition between the electric superradiant phase and the magnetic superradiant phase is of first order and relates to the breaking of the continuous U(1)symmetry.Several important physical quantities,for example the excitation energy and average photon number in the four phases,are derived.We find that the excitation spectra exhibit the Nambu–Goldstone mode.We calculate analytically the higher-order correction and finite-frequency exponents of relevant quantities.To confirm the validity of the low-energy effective Hamiltonians analytically derived by us,the finite-frequency scaling relation of the averaged photon numbers is calculated by numerically diagonalizing the two-mode quantum Rabi Hamiltonian.

关 键 词:two-mode quantum Rabi model superradiant phase transition Nambu–Goldstone mode finite-frequency scaling Schrieffer–Wolff(SW)transformation 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象