Combination of density-clustering and supervised classification for event identification in single-molecule force spectroscopy data  

在线阅读下载全文

作  者:袁泳怡 梁嘉伦 谭创 杨雪滢 杨东尼 马杰 Yongyi Yuan;Jialun Liang;Chuang Tan;Xueying Yang;Dongni Yang;Jie Ma(School of Physics,Sun Yat-sen University,Guangzhou 510275,China;State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-sen University,Guangzhou 510006,China)

机构地区:[1]School of Physics,Sun Yat-sen University,Guangzhou 510275,China [2]State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-sen University,Guangzhou 510006,China

出  处:《Chinese Physics B》2023年第10期749-755,共7页中国物理B(英文版)

基  金:the support from the Physical Research Platform in the School of Physics of Sun Yat-sen University(PRPSP,SYSU);Project supported by the National Natural Science Foundation of China(Grant No.12074445);the Open Fund of the State Key Laboratory of Optoelectronic Materials and Technologies of Sun Yat-sen University(Grant No.OEMT-2022-ZTS-05)。

摘  要:Single-molecule force spectroscopy(SMFS)measurements of the dynamics of biomolecules typically require identifying massive events and states from large data sets,such as extracting rupture forces from force-extension curves(FECs)in pulling experiments and identifying states from extension-time trajectories(ETTs)in force-clamp experiments.The former is often accomplished manually and hence is time-consuming and laborious while the latter is always impeded by the presence of baseline drift.In this study,we attempt to accurately and automatically identify the events and states from SMFS experiments with a machine learning approach,which combines clustering and classification for event identification of SMFS(ACCESS).As demonstrated by analysis of a series of data sets,ACCESS can extract the rupture forces from FECs containing multiple unfolding steps and classify the rupture forces into the corresponding conformational transitions.Moreover,ACCESS successfully identifies the unfolded and folded states even though the ETTs display severe nonmonotonic baseline drift.Besides,ACCESS is straightforward in use as it requires only three easy-to-interpret parameters.As such,we anticipate that ACCESS will be a useful,easy-to-implement and high-performance tool for event and state identification across a range of single-molecule experiments.

关 键 词:single-molecule force spectroscopy data analysis density-based clustering supervised classification 

分 类 号:O561[理学—原子与分子物理] TP18[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象