面向数字孪生的构架裂纹扩展寿命预测建模分析方法  被引量:1

Research on Modeling Method of Crack Propagation Life Prediction for Digital Twin Frame

在线阅读下载全文

作  者:马建勇 马术文 张海柱[1] 黎荣[1] 肖鹏 MA Jianyong;MA Shuwen;ZHANG Haizhu;LI Rong;XIAO Peng(Institute of advanced design and manufacturing,School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)

机构地区:[1]西南交通大学机械工程学院先进设计与制造技术研究所,成都610031

出  处:《机械设计与研究》2023年第5期172-177,共6页Machine Design And Research

基  金:国家重点研发计划资助项目(2020YFB1711402);四川省重点研发计划项目(2022YFG0252);四川省重点研发计划项目(2021YFG0039)。

摘  要:高速列车转向架构架裂纹扩展寿命预测对列车的可靠性和运行安全性具有重要意义。为实现基于数字孪生的构架裂纹扩展寿命预测,提出一种数据和模型融合驱动的构架裂纹扩展寿命预测建模方法。首先,基于数字孪生五维模型建立构架数字孪生模型框架;然后,构建构架裂纹扩展有限元仿真模型得出应力强度因子,并基于Paris公式构建构架裂纹扩展寿命机理模型;进而采用仿真模型和机理模型相结合的方法得出构架裂纹扩展寿命数据集;最后,基于构架裂纹扩展寿命数据集采用Kriging代理模型建立构架裂纹扩展寿命预测模型。研究结果表明该预测模型具有较高的精度和效率,能够有效支持孪生物理数据驱动的构架裂纹扩展寿命预测。The crack propagation life prediction of high-speed train bogie frames is of great significance to the reliability and operation safety of the train.In order to realize the prediction of frame crack propagation life based on digital twin,a modeling method of frame crack propagation life prediction driven by data and model fusion is proposed.Firstly,the framework of digital twin model is established based on the five-dimensional model of digital twin.Then,the finite element simulation model of frame crack propagation is constructed to obtain the stress intensity factor,and the mechanism model of frame crack propagation life is constructed based on Paris formula.Then the data set of frame crack propagation life is obtained by combining the simulation model and the mechanism model.Finally,based on the data set of frame crack propagation life,the prediction model of frame crack propagation life is established using the Kriging surrogate model.The research results show that the prediction model has high accuracy and efficiency,and can effectively support the prediction of crack propagation life of frame driven by twin physical data.

关 键 词:转向架构架 数字孪生 应力强度因子 裂纹扩展寿命 代理模型 

分 类 号:U279.32[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象