检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汤伟[1] 王锦韫 张龙[1] TANG Wei;WANG Jin-yun;ZHANG Long(School of Electrical and Control Engineering,Shaanxi University of Science&Technology,Xi'an 710021,China)
机构地区:[1]陕西科技大学电气与控制工程学院,西安710021
出 处:《包装工程》2023年第21期260-266,共7页Packaging Engineering
基 金:陕西省技术创新引导专项(2020CGHJ-007);陕西省教育厅自然专项(17JK0645);西安市科技计划项目(2020KJRC0146)。
摘 要:目的达到纸病检测中能够充分提取纸病特征、提高检测精度、降低小目标漏检率的目标。方法基于Faster R-CNN的检测算法进行改进,主要改进的做法是利用深度残差网络ResNet-50替换原模型的骨干特征提取网络VGG16,以保留更多的纸病特征信息,增强特征网络对纸张缺陷的提取能力;在算法中添加空间和通道的双重注意力机制CBAM,用来提高纸病检测精度;将ROI-Pooling替换为ROI-Align,增强网络的泛化能力。结果实验结果表明,改进后的算法平均精度达到98%,较原算法平均精度提升了9%。结论改进后的算法能够充分提取纸病特征信息,有效提高了纸病的检测精度,以及提高了小目标纸病的检测率,降低了错漏检率。The work aims to achieve the goal of fully extracting paper defect features,improving detection accuracy and reducing detection rate of small targets in paper defect detection.The detection algorithm was improved based on Faster R-CNN.The main improvements were as follows:the backbone feature extraction network VGG16 of the original model was replaced by the deep residual network ResNet-50 to retain more feature information of paper defect and enhance the feature network's ability to extract paper defects.The dual attention mechanism CBAM of space and channel was added to the algorithm to improve the accuracy of paper defect detection.ROI-Pooling was replaced with ROI-Align to enhance the generalization ability of network.The experimental results indicated that the average accuracy of the improved algorithm reached 98%,which was 9% higher than that of the original algorithm.The improved algorithm can fully extract the feature information,effectively improve the detection accuracy of paper defect,improve the detection rate of small target paper defect,and reduce the error and miss detection rate.
关 键 词:纸病检测 Faster R-CNN ResNet-50 卷积块双重注意力机制 ROI-Align
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.67.85