基于Transformer网络的COVID-19肺部CT图像分割  被引量:2

A Transformer network based CT image segmentation for COVID-19-derived lung disease

在线阅读下载全文

作  者:樊圣澜 柏正尧[1] 陆倩杰 周雪 Fan Shenglan;Bai Zhengyao;Lu Qianjie;Zhou Xue(School of Information Science and Engineering,Yunnan University,Kunming 650500,China)

机构地区:[1]云南大学信息学院,昆明650500

出  处:《中国图象图形学报》2023年第10期3203-3213,共11页Journal of Image and Graphics

基  金:云南省重大科技专项计划项目(202002AD080001)。

摘  要:目的COVID-19(corona virus disease 2019)患者肺部CT(computed tomography)图像病变呈多尺度特性,且形状不规则。由于卷积层缺乏长距离依赖性,基于卷积神经网络(convolutional neural network,CNN)的语义分割方法对病变的假阴性关注度不够,存在灵敏度低、特异度高的问题。针对COVID-19病变的多尺度问题,利用Trans⁃former强大的全局上下文信息捕获能力,提出了一种COVID-19患者肺部CT图像分割的Transformer网络:COVIDTransNet。方法该网络以Swin Transformer为主干,在编码器部分提出了一个具有残差连接和层归一化(layer nor⁃malization,LN)的线性前馈模块,用于特征图通道维度的调整,并用轴向注意力模块(axial attention)替换跳跃连接,提升网络对全局信息的关注度。在解码器部分引入了一种新的特征融合模块,在上采样的过程中逐级细化局部信息,并采用多级预测的方法进行深度监督,最后利用Swin Transformer模块对解码器各级特征图进行解码。结果在COVID-19 CT segmentation数据集上实现了0.789的Dice系数、0.807的灵敏度、0.960的特异度和0.055的平均绝对误差,较Semi-Inf-Net分别提升了5%、8.2%、0.9%,平均绝对误差下降了0.9%,取得了先进水平。结论基于Transformer的COVID-19 CT图像分割网络,提高了COVID-19病变的分割精度,有效解决了CNN方法低灵敏度、高特异度的问题。Objective The corona virus disease 2019(COVID-19)patients-oriented screening is mostly focused on reverse transcription-polymerase chain reaction(RT-PCR)nowadays.However,its challenges have been emerging in related to lower sensitivity and time-consuming.To optimize the related problem of diagnostic accuracy and labor intensive,chest X-ray(CXR)images and computed tomography(CT)images have been developing as two of key techniques for COVID-19 patients-oriented screening.However,these methods still have such limitations like clinicians-related experience factors in visual interpretation.In addition,inefficient diagnostic time span is challenged to be resolved for CT scanning technology as well.To get a rapid diagnosis of COVID-19 patients,emerging deep learning technique based CT scanning technology have been applied to segment and identify lesion regions in CT images of patients.Most of semantic segmentation methods are implemented in terms of convolutional neural networks(CNNs).The lesions of COVID-19 are multi-scale and irregu⁃lar,and it is still difficult to capture completed information derived of the limited receptive field of CNN.Therefore,CNNbased semantic segmentation method does not pay enough attention to false negatives when such lesions are dealt with,and it still has the problem of low sensitivity and high specificity.Method First,Swin Transformer is as the backbone and the output is extracted of the second,fourth,eighth,and twelfth Swin Transformer modules.Four sort of multi-scale feature maps are generated after that.Numerous of datasets are required to be used in terms of transfer learning method and its pretraining weight on ImageNet.Second,a residual connection and layer normalization(LN)based linear feed-forward mod⁃ule is developed to adjust the channel dimension of feature maps,and the axial attention module is applied to improve global information-related network’s attention as well.The linear feed-forward module-relevant fully connected layer can be carried out in the channel dimension

关 键 词:COVID-19 CT图像分割 Swin Transformer 轴向注意力 多级预测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象