A machine learning model to predict unconfined compressive strength of alkali-activated slag-based cemented paste backfill  被引量:2

在线阅读下载全文

作  者:Chathuranga Balasooriya Arachchilage Chengkai Fan Jian Zhao Guangping Huang Wei Victor Liu 

机构地区:[1]Department of Civil and Environmental Engineering,University of Alberta,Edmonton,Alberta,T6G 2E3,Canada

出  处:《Journal of Rock Mechanics and Geotechnical Engineering》2023年第11期2803-2815,共13页岩石力学与岩土工程学报(英文版)

基  金:funded by the Natural Sciences and Engineering Research Council of Canada(NSERC RGPIN-2017-05537).

摘  要:The unconfined compressive strength(UCS)of alkali-activated slag(AAS)-based cemented paste backfill(CPB)is influenced by multiple design parameters.However,the experimental methods are limited to understanding the relationships between a single design parameter and the UCS,independently of each other.Although machine learning(ML)methods have proven efficient in understanding relationships between multiple parameters and the UCS of ordinary Portland cement(OPC)-based CPB,there is a lack of ML research on AAS-based CPB.In this study,two ensemble ML methods,comprising gradient boosting regression(GBR)and random forest(RF),were built on a dataset collected from literature alongside two other single ML methods,support vector regression(SVR)and artificial neural network(ANN).The results revealed that the ensemble learning methods outperformed the single learning methods in predicting the UCS of AAS-based CPB.Relative importance analysis based on the bestperforming model(GBR)indicated that curing time and water-to-binder ratio were the most critical input parameters in the model.Finally,the GBR model with the highest accuracy was proposed for the UCS predictions of AAS-based CPB.

关 键 词:Alkali-activated slag Cemented paste backfill Machine learning Uniaxial compressive strength 

分 类 号:TD8[矿业工程—矿山开采]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象