机器人轮带磨削的重力补偿设计及加工工艺(特邀)  

Design of gravity compensation and machining process for robotic belt grinding(invited)

在线阅读下载全文

作  者:彭纪有 郭兵[1] 王士辉 聂华海 孟变变 赵清亮[1] 赵欢[2] Peng Jiyou;Guo Bing;Wang Shihui;Nie Huahai;Meng Bianbian;Zhao Qingliang;Zhao Huan(Center for Precision Engineering,School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China;State Key Laboratory of Intelligent Manufacturing Equipment and Technology,Huazhong University of Science and Technology,Wuhan 430074,China)

机构地区:[1]哈尔滨工业大学机电工程学院精密工程研究所,黑龙江哈尔滨150001 [2]华中科技大学智能制造装备与技术全国重点实验室,湖北武汉430074

出  处:《红外与激光工程》2023年第9期1-12,共12页Infrared and Laser Engineering

基  金:智能制造装备与技术全国重点实验室开放课题(IMETKF2023005)。

摘  要:机器人辅助轮带磨削是一种基于计算机控制光学成形技术的确定性加工方法,具有成本低、柔性好、智能程度高且操作空间大的优点,因此机器人辅助轮带磨削作为一种较低成本的高精度、多自由度加工方法逐渐受到关注。文中介绍了所设计的机器人辅助轮带磨削系统结构及其加工原理,装置通过气动系统进行输出压力的柔顺控制。研究了任意加工姿态下机器人辅助轮带磨削中的恒力加载问题,分析了轮带磨削工具悬臂组件重力分量对其末端输出接触力的影响,建立了末端执行器的重力分量模型,并提出了基于姿态传感器的重力补偿控制方法,能够实现0~63 N范围内的恒力控制,并且最大压力波动小于1.82%,重力补偿系统的响应时间小于300 ms,实现了轮带磨削工具在任意姿态下的恒力加载。最后,根据Hertz接触理论和Preston方程完成了磨削工具在工件接触区域内的压强分布和速度分布分析,建立了轮带磨削工具的去除函数模型,并对碳化硅曲面与硫化锌非球面进行修形磨削实验,验证了装置加工的稳定性。Objective The application of complex surfaces in aerospace,optical engineering,shipbuilding,and other fields is becoming increasingly widespread.The surface roughness of complex surface components directly affects their performance,efficiency,and lifespan.Improving the surface quality of complex surface components has a significant impact on enhancing their operational performance.The substantial demand for high-precision machining imposes higher requirements on the surface accuracy and complexity of related optical elements.To address the challenges in machining difficult optical elements,such as processing deep cavities and high steepness optical components,this paper proposed a robot-assisted wheel abrasive belt grinding method.Additionally,a gravity compensation system for the wheel abrasive belt grinding device was designed,and the constant force loading and smooth control problems in robot-assisted wheel abrasive belt grinding under arbitrary processing orientations were investigated.Methods This paper proposed a robot-assisted wheel abrasive belt grinding method(Fig.1)and analyzed the influence of the end effector's gravity component on the output pressure.A gravity compensation system for the wheel abrasive belt grinding device was designed(Fig.4),and a physical prototype of the device was built(Fig.5).The performance of the gravity compensation system was tested.Based on Hertz contact theory and Preston equation,the removal function of the wheel abrasive belt grinding device was established(Fig.11).The effectiveness of the device was validated through grinding experiments on a sinusoidal silicon carbide(SiC)surface(Fig.16)and a zinc sulfide(ZnS)aspheric surface(Fig.19).Results and Discussions Due to the influence of the gravity from the cantilever structure of the grinding device itself,when the grinding tool undergoes changes in posture,the output pressure at the end of the grinding device's contact wheel will experience noticeable variations.To address this,we established a model for the gravity compon

关 键 词:机器人辅助加工 轮带磨削 重力补偿 去除函数 碳化硅曲面 硫化锌非球面 

分 类 号:TH164[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象