检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁家望 陈立[2] 张云波 Yuan Jia-Wang;Chen Li;Zhang Yun-Bo(Key Laboratory of Optical Field Manipulation of Zhejiang Province,Department of Physics,Zhejiang Sci-Tech University,Hangzhou 310018,China;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Theoretical Physics,Shanxi University,Taiyuan 030006,China)
机构地区:[1]浙江理工大学物理系,浙江省光场调控重点实验室,杭州310018 [2]山西大学理论物理研究所,量子光学与光量子器件国家重点实验室,太原030006
出 处:《物理学报》2023年第21期297-306,共10页Acta Physica Sinica
基 金:国家自然科学基金(批准号:12074340,12174236);浙江理工大学科学基金(批准号:20062098-Y)资助的课题.
摘 要:在量子光学中,绝热消除可以简化多能级量子系统,它通过消除快速振荡自由度、保留慢变量动力学,从而获得系统的有效描述.绝热消除在量子模拟和量子精密测量中具有重要应用,比如利用三能级拉曼耦合和绝热消除人们在超冷原子中实现了自旋-轨道耦合.本文在三能级绝热消除的基础上研究三能级非厄米系统与多能级系统中绝热消除的理论方法及其推广,验证了绝热消除理论在非厄米系统和多能级系统中的有效性与准确性.本文研究可为耗散的多能级量子系统中的态制备和动力学操控提供理论基础.In quantum optics,adiabatic elimination simplifies multi-level quantum system by eliminating the fast oscillatory degree of freedom and preserving the slow-varying dynamics,thus obtaining an efficient description of the system.Adiabatic elimination has important applications in quantum simulation and quantum precision measurement.For example,spin-orbit coupling has been realized in ultracold atoms by using three-level Raman coupling and adiabatic elimination.In this paper,we investigate the theoretical method and generalize the adiabatic elimination in three-level non-Hermitian systems and multi-level systems on the basis of standard elimination scheme.These can provide theoretical guidance for realizing the interdiscipline of non-Hermitian physics and spin-orbit coupling effects and their potential applications.We mainly discuss the influences of dissipative effect on the population dynamics of the system,the validity and accuracy of the adiabatic elimination theory under different parameters for both non-Hermitian and two types of five-level systems.Specifically,the dynamics satisfying the large detuning condition gives very accurate results for quite a long evolution time with the adiabatic elimination theory,but when the two-photon detuningδand the Rabi frequencyΩgradually increase,leading to the violation of the large detuning conditionΩ,γ,δ≪Δ,the effective two-level model can no longer describe the fast-varying dynamics of the system even in a short evolution time.Thus the choice of system parameters affects the effectiveness of adiabatic elimination of the excited levels.In a non-Hermitian system,the population in the ground state oscillates with gain periodically at the beginning,while that in the ground state oscillates with loss and decreases with time,with the total population decreasing with oscillation.For long-time evolution the gain in the system causes the population to diverge,and the adiabatic elimination of the effective two-energy level system describes this behavior accurately.The eff
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49