基于滑动无偏灰色模型的港口物流需求精准估计研究  

Research on Accurate Estimation of Port Logistics Demand Based on Moving Unbiased Grey Model

在线阅读下载全文

作  者:丁惠芳[1] 周强[2] DING Hui-fang;ZHOU Qiang(Personnel Department,Wuhan University of Technology,Wuhan 430070,China;School of Transportion and Logistics Engineering,Wuhan University of Technology,Wuhan 430070,China)

机构地区:[1]武汉理工大学人事处,武汉430070 [2]武汉理工大学交通物流工程学院,武汉430070

出  处:《武汉理工大学学报》2023年第10期120-126,共7页Journal of Wuhan University of Technology

摘  要:港口物流需求影响因素复杂多变,导致港口物流需求估计难度增加,因此研究基于滑动无偏灰色模型的港口的港口物流需求精准估计方法。通过分析港口物流需求影响因素,构建港口物流需求精准估计指标集。采用灰色关联分析方法选取满足港口物流需求分析的相关指标,结合滑动无偏灰色模型建立港口物流需求精准估计模型,采用粒子群算法对模型参数进行优化处理,将指标数据输入优化后的模型中,得到精准的港口物流需求精准估计结果。实验结果表明,所提方法的港口物流需求估计精度较高,出现误差的概率比较低,估计任务完成时间短,可以有效推进港口城市物流经济发展。The influencing factors of port logistics demand are complex and changeable,which makes it more difficult to estimate port logistics demand.Therefore,an accurate estimation method of port logistics demand based on sliding unbiased grey model is studied.By analyzing the influencing factors of port logistics demand,an accurate estimation index set of port logistics demand is constructed.The grey correlation analysis method is used to select the relevant indicators that meet the port logistics demand analysis,and the sliding unbiased grey model is used to establish the accurate estimation model of port logistics demand.The particle swarm optimization algorithm is used to optimize the model parameters,and the index data is input into the optimized model to obtain the accurate estimation results of port logistics demand.The experimental results show that the proposed method has high accuracy of port logistics demand estimation,low probability of error,and short estimation task completion time,which can effectively promote the development of port city logistics economy.

关 键 词:滑动无偏灰色模型 港口物流需求 精准估计 灰色关联分析方法 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象