检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈天意 李东豪 徐忠孝[1,2] 申恒 CHEN TianYi;LI DongHao;XU ZhongXiao;SHEN Heng(State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-electronics,Shanxi University,Taiyuan 030006,China;Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China)
机构地区:[1]山西大学光电研究所,量子光学与光量子器件国家重点实验室,太原030006 [2]山西大学极端光学协同创新中心,太原030006
出 处:《中国科学:物理学、力学、天文学》2023年第11期20-37,共18页Scientia Sinica Physica,Mechanica & Astronomica
基 金:国家重点研发计划青年项目(编号:2020YFA0309400);国家自然科学基金(编号:12222409,12174081,11974228);山西省科技重大专项计划“揭榜挂帅”项目(编号:202101150101025)资助。
摘 要:量子精密测量与传感旨在利用量子资源和效应实现超越经典方法的测量精度,并通过量子操控实现对磁场、惯性、重力、时间等物理量的超高精度测量.精密测量是获取物理量信息的源头,随着量子光学、原子物理学等领域的发展,诺贝尔物理学奖成果的推动以及国际计量单位7个基本物理量实现“量子化”,精密测量已经进入量子时代.相比于基于经典物理技术的传感器,量子传感器基于对量子系统的操控,测量精度可突破量子极限,另外,因其不受制造差异、缺陷、杂质和老化等因素影响,使其更适用于精密测量.量子传感器在生物磁场测量、地磁异常测量、空间磁场测量等量子精密测量领域已经显示出了其突出的应用价值.在实际应用的过程中,目前的实验系统不可避免地会面临一些新问题,比如系统装置较大、便携性及可操作性差、装置功耗较高、造价昂贵等.鉴于精密测量未来广大的应用前景,国际上的一些研究机构如美国国家标准局积极开展了关于芯片化原子传感装置的研究与系统开发.其中基于原子系统的原子钟、磁力计等方面的研究进展突出.本文主要是从原子钟和磁力计的研究出发对芯片化原子装置的最新发展和应用进行了综述,分析了面临的机遇与挑战.此外,以团队发展的微米原子芯片磁力计为例,介绍了量子增强测量的技术路线.Quantum precision measurement and sensing aims to obtain a measurement accuracy beyond the limits specified by classical measurement techniques and achieve ultra-high precision measurements of physical quantities,such as magnetic field,inertia,gravity,and time by employing quantum resources and effects.With the advancement of quantum optics,atomic physics,and related fields,in addition to the incentives of the Nobel Prize and the“quantization”of the seven basic physical quantities of the International Unit,precision measurement has entered the quantum era.Compared with conventional sensors based on classical technology,quantum sensors can surpass the standard quantum limit.In addition,quantum sensors are more appropriate for precision measurements because they are not affected by manufacturing differences,defects,impurities,aging,and other factors.It has broad application potential in biomagnetism,geomagnetism,space magnetic field detection,and so on.Furthermore,its practical applications include complicated systems,poor portability and operability,high power consumption,and high cost.However,many issues remain to be addressed.Given the broad application prospect of precision measurement,certain international institutions,for instance,NIST,have begun researching chip-scale atomic sensing devices.Among the reponed chip-scale atomic systems thus far,the progress of the atomic clock and magnetometer is paramount.In this paper,we review the latest development and application of chip-scale atomic clocks and magnetometers and examine their opportunities and challenges.Finally,by taking the homebuilt microfabricated atomic magnetometer as an example,we describe the mechanism of spin squeezing-assisted quantum-enhanced metrology and provide a long-term outlook for chip-scale quantum-enhanced metrology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.51.133