检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Navodini Wijethilake Mithunjha Anandakumar Cheng Zheng Peter T.C.So Murat Yildirim Dushan N.Wadduwage
机构地区:[1]Center for Advanced Imaging,Faculty of Arts and Sciences,Harvard University,Cambridge,MA,USA [2]Department of Electronic and Telecommunication Engineering,University of Moratuwa,Moratuwa,Sri Lanka [3]Department of Mechanical Engineering,Massachusetts Institute of Technology,77 Massachusetts Ave.,Cambridge,MA 02139,USA [4]Laser Biomedical Research Center,Massachusetts Institute of Technology,77 Massachusetts Ave.,Cambridge,MA 02139,USA [5]Department of Biological Engineering,Massachusetts Institute of Technology,77 Massachusetts Ave.,Cambridge,MA 02139,USA [6]Picower Institute for Learning and Memory,Massachusetts Institute of Technology,77 Massachusetts Ave.,Cambridge,MA 02139,USA [7]Department of Neuroscience,Cleveland Clinic Lerner Research Institute,Cleveland,OH 44195,USA
出 处:《Light(Science & Applications)》2023年第10期2199-2214,共16页光(科学与应用)(英文版)
基 金:supported by the Center for Advanced Imaging at Harvard University(D.N.W.,N.W.,M.A.);5-P41EB015871-32(D.N.W.,P.T.C.S.);R21 MH130067(P.T.C.S.,D.N.W.);R21 NS105070(P.T.C.S.);R00EB027706(M.Y.);supported by the John Harvard Distinguished Science Fellowship Program within the FAS Division of Science of Harvard University.
摘 要:Limited throughput is a key challenge in in vivo deep tissue imaging using nonlinear optical microscopy.Point scanning multiphoton microscopy,the current gold standard,is slow especially compared to the widefield imaging modalities used for optically cleared or thin specimens.We recently introduced“De-scattering with Excitation Patterning”or“DEEP”as a widefield alternative to point-scanning geometries.Using patterned multiphoton excitation,DEEP encodes spatial information inside tissue before scattering.However,to de-scatter at typical depths,hundreds of such patterned excitations were needed.In this work,we present DEEP2,a deep learning-based model that can de-scatter images from just tens of patterned excitations instead of hundreds.Consequently,we improve DEEP’s throughput by almost an order of magnitude.We demonstrate our method in multiple numerical and experimental imaging studies,including in vivo cortical vasculature imaging up to 4 scattering lengths deep in live mice.
关 键 词:SCATTERING EXCITATION SCATTER
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.131.147