我国辛辣类蔬菜价格波动预警分析  

Early warning analysis on price fluctuation of spicy vegetables in China

在线阅读下载全文

作  者:王孟伟 周悦[1] 白丽[1] 王哲[1] WANG Mengwei;ZHOU Yue;BAI Li;WANG Zhe(School of Economics and Management,Hebei Agricultural University,Baoding 071000,Hebei,China)

机构地区:[1]河北农业大学经济管理学院,河北保定071000

出  处:《中国瓜菜》2023年第11期151-160,共10页China Cucurbits And Vegetables

基  金:财政部和农业农村部“国家现代农业产业技术体系项目”(CARS-24-F-01);河北省高层次人才项目——“一带一路”战略背景下河北省农产品出口潜力与对策研究(C201876);河北省教育厅课题“农业产业化经营模式、利益联结机制与支持政策研究”(BJ2019063)。

摘  要:近年来小宗蔬菜的价格波动十分剧烈,其市场价格监测平台虽不断完善,但缺乏对小宗蔬菜价格大幅波动的预警机制。以主要辛辣类蔬菜价格为研究对象,建立基于BP神经网络的价格波动预警模型,对辛辣类蔬菜价格进行短期预测预警,探索辛辣类蔬菜价格未来走势。结果表明,基于BP神经网络的辛辣类蔬菜价格预警模型能够很好地满足要求;大蒜未来价格呈先下降后上升的深“U”型态势;大葱未来价格呈曲折下降的态势;生姜未来价格呈先缓慢下降后上升的浅“U”型态势;洋葱未来价格呈先下降后平稳的态势;辣椒未来价格呈先上升后下降的倒“V”型态势。In recent years,the price of small batches of vegetables has fluctuated sharply.Although its market price monitoring platform has been continuously improved,there is a lack of early warning mechanisms for large fluctuations in the price.Taking the main spicy vegetable prices as the research object,a price fluctuation early warning model based on BP neural network is established to conduct short-term prediction and early warning on spicy vegetable prices,and explore the future trend of spicy vegetable prices.The results show that the price early warning model of spicy vegetables based on BP neural network can well meet the requirements.The future price of garlic presents a deep“U”shape,with a downward trend followed by an upward trend.The future price of scallions presents a tortuous downward trend.The future price of ginger presents a shallow“U”shape,with a slow decline and then an upward trend.The future price of onions will first decline and then stabilize.The future price of chili peppers presents an inverted“V”shape,rising first and then falling.

关 键 词:辛辣类蔬菜 价格波动 价格走势 预警分析 

分 类 号:F323.7[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象