检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:阮鸿柱 黄小弟 王金宝 杜梦辉 RUAN Hong-zhu;HUANG Xiao-di;WANG Jin-bao;DU Meng-hui(Yunnan Transportation Development Center,Kunming 650031,China;School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China)
机构地区:[1]云南省综合交通发展中心,云南昆明650031 [2]北京交通大学计算机与信息技术学院,北京100044
出 处:《计算机技术与发展》2023年第11期189-195,共7页Computer Technology and Development
基 金:中央高校基本科研业务费(2019JBM023)。
摘 要:高速公路的交通事故风险预测对智能交通和公共安全具有重要意义。现有方法通过挖掘历史事故的时空特征预测交通事故风险。但是,在高速公路事故风险预测中仍存在以下两个挑战。首先,事故具有不均衡的空间分布,相邻路段的事故分布差异可能较大,而相隔较远却具有相似拓扑连接关系路段的事故分布可能较相似。另外,由于事故的偶发性,其在时间维的分布非常稀疏,因此在捕获事故影响因素时缺乏足够的样本。针对第一个挑战,使用自适应图卷积网络以数据驱动的方式学习路段间的空间相关性;此外,根据Mixup策略进行数据增广以生成足够多的事故风险样本解决事故数量稀疏的问题,然后用对比学习方法以更好地区分风险与非风险样本,以实现更准确的事故风险预测。基于桂林市高速公路网真实交通数据集的实验结果表明,相比于最优方法,该方法的平均绝对误差指标降低了18.3%,平均准确率、召回率指标分别提升了8.1%、6.9%,因此,该方法可以更准确地预测高速公路事故风险。Highway traffic accident risk prediction is vital to intelligent transportation and public safety.Existing approaches predict traffic accident risk by mining the spatio-temporal characteristics of historical accidents.However,there are still two challenges in highway accident risk prediction.Firstly,the accidents have uneven spatial distribution.The difference in accident distribution between adjacent roads may be large,while the accident distribution of distant roads with similar topological connection relationships may be similar.In addition,due to the contingency of the accident,its distribution in the time dimension is quite sparse,so there is not enough sample to capture the influence factors of traffic accidents.For the first challenge,we use an adaptive graph convolutional network to learn the spatial correlation between roads in a data-driven way.In addition,we adopt data augmentation based on a Mixup strategy to generate enough accident risk samples to solve the problem of data sparsity and then use contrastive learning to better distinguish risk and non-risk samples so as to achieve more accurate accident risk prediction.The experimental results based on the real traffic dataset of the Guilin expressway network show that compared with other optimal methods,the mean absolute error of the proposed method is reduced by 18.3%,and the average accuracy and the recall are increased by 8.1%and 6.9%,respectively.Therefore,the proposed method can predict highway accident risk more accurately.
关 键 词:智能交通 交通事故风险预测 对比学习 自适应图神经网络 数据增广
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7