基于级联虚-实融合的飞机钣金零件识别方法  

Method for Aircraft Sheet Metal Part Recognition Based on Cascading Virtual-Real Fusion

在线阅读下载全文

作  者:门向南 李志强 邓涛 MEN Xiangnan;LI Zhiqiang;DENG Tao(Chengdu Aircraft Industrial(Group)Co.Ltd.,Chengdu 610073,P.R.China)

机构地区:[1]成都飞机工业(集团)有限责任公司,中国成都610073

出  处:《Transactions of Nanjing University of Aeronautics and Astronautics》2023年第5期607-617,共11页南京航空航天大学学报(英文版)

基  金:partly supported by Chengdu Aircraft Industrial(Group)Co.Ltd.;the Natural Science Foundation of China(No.52075260)。

摘  要:提出了一种级联虚实融合方法来识别具有显著相似性的各种飞机钣金零件(Sheet metal parts,SMPs)。SMP通过涉及“粗略”“精细”和“首选”阶段的级联过程进行识别和编号。该方法将虚拟工作台建模与物理工作台识别相结合。最初,通过捕获物理工作台上钣金件的主方向图像并从图像中提取8D形状描述向量来识别SMP的“粗糙”集,这导致候选SMP集的发现。随后,利用图像的灰度信息对候选SMP集进行模板匹配,以实现“精细”匹配。提出了识别可靠性的定量测量,在增强现实3D投影的帮助下启动后续的“首选”识别过程。通过实际实验验证了该方法的有效性和优越性,在测试件中达到了最高准确率96.9%。借助3D投影,人机结合准确率100%。A cascading virtual-real fusion approach is proposed to recognize various aircraft sheet metal parts(SMPs)with remarkable similarities.The SMPs are identified and numbered by cascading“Rough”“Fine”,and“Preferred”Through the virtual-real fusion approach of virtual workbench modelling and physical workbench actual recognition.The“Rough”SMP set is identified by gathering the main direction image of the sheet metal item on the real workbench and obtaining an eight-dimensional(8D)shape-description vector from the image.This leads to the discovery of a candidate SMP set.Then,template matching is conducted on the candidate SMP set based on the image’s grey information,and“Fine”matching is obtained.A quantitative index of recognition reliability is proposed to subsequently initiate the“Preferred”recognition process,which is accomplished with an augmented reality 3D projection.The effectiveness and superiority of the propsed method are verified by real experiments,and the best accuracy rate of 96.9%is achieved in testing parts.With the help of 3D projection,the accuracy of man-machine combination is 100%.

关 键 词:图像识别 飞机钣金件 仿真成像 三维投影 虚实融合 

分 类 号:TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象