Chip design with machine learning:a survey from algorithm perspective  

在线阅读下载全文

作  者:Wenkai HE Xiaqing LI Xinkai SONG Yifan HAO Rui ZHANG Zidong DU Yunji CHEN 

机构地区:[1]State Key Lab of Processor,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China [2]University of Chinese Academy of Sciences,Beijing 100049,China [3]Cambricon Technologies,Beijing 100191,China

出  处:《Science China(Information Sciences)》2023年第11期65-95,共31页中国科学(信息科学)(英文版)

基  金:partially supported by National Natural Science Foundation of China(Grant Nos.61925208,62222214,62102399,U22A2028,U19B2019);Beijing Academy of Artificial Intelligence(BAAI),CAS Project for Young Scientists in Basic Research(Grant No.YSBR-029);Youth Innovation Promotion Association CAS and Xplore Prize。

摘  要:Chip design with machine learning(ML)has been widely explored to achieve better designs,lower runtime costs,and no human-in-the-loop process.However,with tons of work,there is a lack of clear links between the ML algorithms and the target problems,causing a huge gap in understanding the potential and possibility of ML in future chip design.This paper comprehensively surveys existing studies in chip design with ML from an algorithm perspective.To achieve this goal,we first propose a novel and systematical taxonomy that divides target problems in chip design into three categories.Then,to solve the target problems with ML algorithms,we formulate the three categories as three ML problems correspondingly.Based on the taxonomy,we conduct a comprehensive survey in terms of target problems based on different ML algorithms.Finally,we conclude three key challenges for existing studies and highlight several insights for the future development of chip design with machine learning.By constructing a clear link between chip design problems and ML solutions,we hope the survey can shed light on the road to chip design intelligence from previous chip design automation.

关 键 词:chip design machine learning chip design automation design result estimation design optimization and correction design construction 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TN402[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象