Reinforcement learning-based cost-sensitive classifier for imbalanced fault classification  

在线阅读下载全文

作  者:Xinmin ZHANG Saite FAN Zhihuan SONG 

机构地区:[1]State Key Laboratory of Industrial Control Technology,College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China

出  处:《Science China(Information Sciences)》2023年第11期109-122,共14页中国科学(信息科学)(英文版)

基  金:supported in part by National Natural Science Foundation of China(Grant Nos.62003301,61833014);Natural Science Foundation of Zhejiang Province(Grant No.LQ21F030018)。

摘  要:Fault classification plays a crucial role in the industrial process monitoring domain.In the datasets collected from real-life industrial processes,the data distribution is usually imbalanced.The datasets contain a large amount of normal data(majority)and only a small amount of faulty data(minority);this phenomenon is also known as the imbalanced fault classification problem.To solve the imbalanced fault classification problem,a novel reinforcement learning(RL)-based cost-sensitive classifier(RLCC)based on policy gradient is proposed in this paper.In RLCC,a novel cost-sensitive learning strategy based on policy gradient and the actor-critic of RL is developed.The novel cost-sensitive learning strategy can adaptively learn the cost matrix and dynamically yield the sample weights.In addition,RLCC uses a newly designed reward to train the sample weight learner and classifier using an alternating iterative approach.The alternating iterative approach makes RLCC highly flexible and effective in solving the imbalanced fault classification problem.The effectiveness and practicability of the proposed RLCC method are verified through its application in a real-world dataset and an industrial process benchmark.

关 键 词:imbalanced fault classification fault diagnosis industrial process monitoring deep reinforcement learning cost-sensitive learning policy gradient sample weights 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程] TP277[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象