Homogenization with the Quasistatic Tresca Friction Law:Qualitative and Quantitative Results  

在线阅读下载全文

作  者:Changqing YE Eric T.CHUNG Jun-zhi CUI 

机构地区:[1]Department of Mathematics,the Chinese University of Hong Kong,Shatin,Hong Kong SAR,China [2]LSEC,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

出  处:《Chinese Annals of Mathematics,Series B》2023年第5期781-802,共22页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(No.51739007);the Hong Kong RGC General Research Fund(Nos.14305222,14304021);the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDC06030101)。

摘  要:Modeling of frictional contacts is crucial for investigating mechanical performances of composite materials under varying service environments.The paper considers a linear elasticity system with strongly heterogeneous coefficients and quasistatic Tresca friction law,and studies the homogenization theories under the frameworks of H-convergence and small ε-periodicity.The qualitative result is based on H-convergence,which shows the original oscillating solutions will converge weakly to the homogenized solution,while the author’s quantitative result provides an estimate of asymptotic errors in H^(1)-norm for the periodic homogenization.This paper also designs several numerical experiments to validate the convergence rates in the quantitative analysis.

关 键 词:HOMOGENIZATION Frictional contact mechanics Quasistatic Tresca frictionlaw 

分 类 号:O313.5[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象